Polski

Short pulse lasers in the form of chips use the so-called mode coupling principle

463
2023-11-10 14:56:31
Zobacz tłumaczenie

Nowadays, lasers that emit extremely short flashes can be found in many research laboratories, but they usually fill the entire room. Physicists have now successfully reduced this laser to the size of a computer chip. As they reported in the journal Science, their research can lay the foundation for extremely compact detectors.

A team led by Qiushi Guo from the California Institute of Technology in Pasadena has constructed their prototype semiconductor for short pulse lasers based on gallium arsenide, which is used to generate laser beams. They combined it with a crystal of another compound called lithium niobate, which is used as a conductor for light waves. Researchers arranged these two components on the basis of silicon and silicon dioxide to produce laser chips with a size of only a few millimeters.

Like other short pulse lasers, the new micro laser uses the so-called mode coupling principle: the light waves in the laser match each other in a mutually amplified manner, resulting in extremely short light pulses. Researchers successfully achieved this by applying high-frequency electric fields adapted to laser pulses. Previously, larger short pulse lasers also used this principle. But in the new laser, they cleverly arranged tiny waveguides so that they could keep the laser correspondingly small.

Trillionths of a second of short infrared flash
In testing, the prototype emitted short flashes of less than five picoseconds - millionths of a second infrared light. Their wavelength was 1065 nanometers and they repeated about 10 billion times per second. When doing so, the maximum power of the laser is half a watt, which is 500 times that of a traditional laser pen.

In the future, micro lasers can pave the way for small detectors, such as detecting bacteria and viruses in smartphones. They reflect the incident laser in a unique way, so they can be detected using highly sensitive sensors. Other applications lie in chips that use light to process digital data, making them faster than other systems. Even atomic clock lasers can be used in chip form. These can achieve accurate navigation without GPS signal, "Guo said. Considering these applications, researchers now hope not only to further increase the power of short pulse lasers, but also to make the optical pulses shorter - as low as a few femtoseconds.

Source: Laser Network

Powiązane rekomendacje
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    Zobacz tłumaczenie
  • DIT and SK Hynix sign KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. According to DIT, the equipment supplied to SK Hynix this time is mainly a laser annealing kit. DIT was founded in 2005 and was listed on KOSDAQ in 2018. Its main focus is o...

    01-20
    Zobacz tłumaczenie
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    Zobacz tłumaczenie
  • Screen Innovation Launches Short Focus Elevated Electric Laser TV Projection Screen

    Screen Innovations has added a short focal lift electric screen solution to its component and material series, meeting the growing demand for large but hidden displays in small media rooms and company boards.Unlike traditional projection systems that require sufficient distance from the projector to the screen or perform best in a darkroom, pop-up laser TVs are only a few inches away from short fo...

    2023-10-27
    Zobacz tłumaczenie
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    Zobacz tłumaczenie