Polski

Widely tunable terahertz laser enhances photo induced superconductivity in K3C60

744
2023-10-13 14:41:30
Zobacz tłumaczenie

Researchers at the Max Planck Institute for Material Structure and Dynamics (MPSD) in Hamburg, Germany, have long been exploring the effect of using custom laser drivers to manipulate the properties of quantum materials to deviate from equilibrium states.

One of the most eye-catching demonstrations of these physics is unconventional superconductors, where enhanced electron coherence and super transport characteristics have been recorded in the resulting non equilibrium states. However, mainly due to the complexity of the experiment, these phenomena have not been systematically studied or optimized. Therefore, the application of technology is still far from reality.

In a recent experiment, the same group of researchers discovered a more effective method of using lasers to create previously observed metastable, superconducting like states in K 3C 60. The research results of the Cavalieri group are published in the journal Nature Physics.

Researchers have shown that when the laser is tuned to a specific low-frequency resonance, much lower intensity light pulses can produce the same effect at higher temperatures. The laser technology developed by the research institute is the key to this work. By adjusting the light source to 10 THz (a frequency lower than previously possible), the team successfully reproduced a long-lived superconducting state in fullerene based materials, while reducing the pulse intensity by 100 times. This light induced state can be directly observed to last for 100 picoseconds at room temperature, but its lifespan is expected to be at least 0.5 nanoseconds (nanoseconds are billionths of a second, picoseconds are trillions of a second).

Edward Rowe, a doctoral student and lead author of the Cavalieri group, said that their findings provide new clues to the potential microscopic mechanism of photo induced superconductivity: "Identification of resonance frequencies will enable theorists to understand which excitations are actually important, as there is currently no widely accepted theoretical explanation for this effect in K3C60

Rowe envisions that a light source with a higher repetition rate at a frequency of 10 THz can help maintain metastable states for a longer time: "If we can transmit each new pulse before the sample returns to its non superconducting equilibrium state, then it is possible to maintain a quasi superconducting state continuously.

Andrea Cavalleri, Director of MPSD, said: "These experiments demonstrate well how appropriate technological advancements can make many so far unrealistic phenomena feasible." He believes that two years of effort in exploring these effects will converge into future technologies. It is equally evident that a key bottleneck that needs to be addressed is the type and availability of laser sources, which should go hand in hand with these studies to promote the development of this field.

The study was conducted at the MPSD Free Electron Laser Science Center (CFEL) in Hamburg. It is supported by DFG (German Research Foundation) through the Excellence Cluster CUI: Advanced Material Imaging. The K 3 C 60 sample was prepared at the University of Parma in Italy.

Source: Laser Network

Powiązane rekomendacje
  • Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

    Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President. Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace a...

    2024-11-20
    Zobacz tłumaczenie
  • Topological high-order harmonic spectroscopy in Communications Physics

    It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The rele...

    2024-01-15
    Zobacz tłumaczenie
  • Advanced optical giant Schott announces completion of Malaysia factory

    Recently, German optical giant SCHOTT is pleased to announce that its advanced production plant located in Gulim, Kedah, Malaysia has been successfully completed. This milestone event was celebrated with the joint witness of employees, clients, and representatives from the Malaysian Investment Development Authority (MIDA).The completion of the new factory marks a significant increase in Schott's...

    2024-10-16
    Zobacz tłumaczenie
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Zobacz tłumaczenie
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    Zobacz tłumaczenie