Polski

A new type of electrically driven organic semiconductor laser can be used in the fields of spectroscopy, metrology, and sensing

704
2023-10-07 16:48:45
Zobacz tłumaczenie

According to a report from Maims Consulting, scientists at the University of St. Andrews in the UK recently stated that they have made a "significant breakthrough" in the decades of challenges in developing compact organic semiconductor laser technology. 

Firstly, an OLED with a world record light output was manufactured, and then integrated with a polymer laser structure. This new type of laser emits a green laser beam composed of short light pulses.

Structure of electrically driven organic semiconductor lasers
The paper published in the journal Nature explains how the research team at the University of St. Andrews overcomes common organic semiconductor problems such as low current density and intolerable losses caused by injecting charges into the gain medium.
The paper points out that "researchers have achieved loss reduction by developing an integrated device structure that effectively combines OLEDs with extremely high internal light generation capabilities with polymer distributed feedback lasers. Under the electrical driving of the integrated structure, the threshold of light output and driving current can be observed, with a narrow emission spectrum and the formation of a laser beam above the threshold.

The research results provide an organic electronic device that has never been proven before, and indicate that indirect electric pumping of OLEDs is a very effective method for achieving electrically driven organic semiconductor lasers. This provides a method for visible light lasers that can be applied in the fields of spectroscopy, metrology, and sensing.

The conclusion of the paper is: "Researchers have demonstrated an integrated device method that can achieve electrically driven lasers in organic semiconductors, thus solving an important challenge in organic optoelectronics. This method overcomes the main difficulties commonly encountered in direct electrical injection attempts of organic or hybrid perovskite lasers, while retaining operational advantages.

Original link:https://www.eet-china.com/mp/a256224.html

Source: MEMS, Breadboard Community - Core Language

Powiązane rekomendacje
  • Focused Energy purchases two world-class high-energy lasers

    Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average pow...

    2024-12-25
    Zobacz tłumaczenie
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    Zobacz tłumaczenie
  • The United States has successfully developed a full 3D printed electric spray engine

    The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.Image source: Massachusetts Institute of Technology, USAThe Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting ...

    02-20
    Zobacz tłumaczenie
  • Opton Laser commercializes ultra-high contrast third-order autocorrelators

    Recently, Opton Laser International, a supplier specializing in photonics, is currently distributing manufacturer UltraFast Innovations (UFI)'s ultra-high contrast third-order autocorrelator Tundra++. The new generation Tundra aims to characterize the temporal intensity distribution and quality of laser pulses with particularly high sensitivity.This is to avoid the harmful effects caused by the hi...

    2023-08-31
    Zobacz tłumaczenie
  • GZTECH Global Headquarters and Advanced Light Source R&D and Production Base Launch Construction

    On June 10th, the construction of GZTECH's global headquarters and advanced light source research and development production base was launched. Rendering of GZTECH Global Headquarters and Advanced Light Source R&D and Production Base The project is located in Donghu Comprehensive Bonded Zone, with a total construction area of approximately 40000 square meters. It will integrate GZTECH's i...

    06-13
    Zobacz tłumaczenie