Polski

NICT Japan corrects sudden data errors caused by atmospheric turbulence in laser links

25
2025-10-25 10:35:45
Zobacz tłumaczenie

The National Institute of Information and Communication Technology of Japan, Nagoya Institute of Technology, and Japan Aerospace Exploration Agency have achieved the so-called "world's first successful demonstration of next-generation error correction codes, reducing the impact of atmospheric turbulence on ground to satellite laser communication".

Atmospheric turbulence in ground-to-satellite laser links is known to cause fading, resulting in burst data errors. Error correction codes are one of the key technologies to mitigate such effects.

The Japan-based group stated, “In this experiment, we transmitted next-generation error correction codes with high correction capability (5G NR LDPC and DVB-S2) and successfully corrected burst data errors caused by atmospheric turbulence in the laser link.

“This result, confirming that both codes can significantly improve communication quality compared to conventional schemes, is expected to contribute to the practical implementation of ground-to-satellite laser communications by applying these codes.”

 



JAXA’s Laser Utilizing Communication System (LUCAS)


NICT has been conducting research and development to implement practical ground-to-satellite laser communications. The institute says it recognizes overcoming atmospheric turbulence as “one of technical challenges for the practical implementation”. To address this challenge, NICT has carried out ground-to-geostationary (GEO) satellite laser communication experiments using NICT’s 1-meter optical ground station and JAXA’s Laser Utilizing Communication System (LUCAS) onboard the optical data relay satellite, in order to investigate the impact of atmospheric turbulence on communication quality.

This investigation revealed that atmospheric turbulence causes fading lasting from several milliseconds to several tens of milliseconds, which generates burst data errors. These errors lead to degraded and unstable communication quality. Currently, two approaches are available to overcome these effects: optical compensation schemes and error correction codes. Focusing on the advantage of eliminating control systems of optics, NICT adopted error correction codes.

Error correction by next-gen codes
NICT has been working on a plan to demonstrate error correction using next-generation codes with higher correction capability than conventional Reed-Solomon codes, including 5G NR LDPC for 5G applications and DVB-S2 for satellite broadcasting. In this experiment, NICT, in collaboration with NITech, conducted data transmission with next-generation error correction codes, including 5G NR LDPC and DVB-S2, using a 60 Mbps downlink on the ground-to-GEO satellite laser communication link between NICT’s 1-meter optical ground station and LUCAS.

Utilizing NICT’s experiences acquiring atmospheric turbulence, the parameters involved with interleaving method and error correction code were optimized to address burst errors caused by fading.

Analyzing this experimental data successfully demonstrated the correction of burst data errors caused by atmospheric turbulence-induced fading, marking that the world’s first confirmation that 5G NR LDPC and DVB-S2 can significantly improve communication quality compared to conventional codes.

These advanced codes not only offer high error correction capability but also are expected to assist practical application in ground-to-satellite laser communications due to achieving easily implementable hardware and potential interoperability with future 5G communication systems.

 



Experimental setup of data transmission with next-gen error correction


Future prospects

The group says that this achievement “leads to the improvement of communication quality for ground-to-satellite laser links and accelerates their practical implementation. It also enables applying existing terrestrial 5G communication protocols and satellite broadcasting standards to space communication network system.”

In the future, this technology is expected to play a key role in ground-to-satellite laser communication systems. This work is to be presented on October 28, 2025 in the International Conference on Space Optical Systems and Applications (ICSOS) 2025, in Kyoto, Japan, a leading international conference on space optical communication systems.

Source: optics.org

Powiązane rekomendacje
  • The Linac Coherent Light Source II X-ray Laser in the United States has completed over a decade of upgrading and emitted the first X-ray with a record breaking brightness

    According to reports, the Linac Coherent Light Source II (LCLS-II) X-ray laser at the Stanford SLAC National Accelerator Laboratory in the United States has just completed an upgrade that took more than a decade. After a facelift, it has become the world's brightest X-ray facility and emitted the first record breaking X-ray, allowing researchers to record the behavior of atoms and molecules in bio...

    2023-09-20
    Zobacz tłumaczenie
  • Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

    Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the compre...

    2024-02-03
    Zobacz tłumaczenie
  • Fraunhofer ILT utilizes short pulse lasers to achieve high-speed optical stamping

    At the Fraunhofer Institute for Laser Technology (ILT), researchers in collaboration with RWTH Aachen University – Chair for Technology of Optical Systems (RWTH-TOS) are using a spatial light modulator (SLM) to shape the beam of an ultrashort pulse laser precisely into the desired pattern to apply to the surface of a workpiece.The developers say that this approach “significantly speeds up processi...

    09-25
    Zobacz tłumaczenie
  • Expert discussion at IEC TC110 conference: Laser display is expected to surpass traditional display solutions

    Recently, the International Electrotechnical Commission Electronic Display Technology Committee (IEC TC110) International Standards Conference was held in Qingdao, attracting more than 120 experts, scholars, and technical representatives from around the world, including Japan, South Korea, and the United States. At the IEC TC110 conference, laser display technology has won wide recognition from in...

    02-25
    Zobacz tłumaczenie
  • The globalization of three-color laser technology will be further accelerated

    Recently, the IFA2023 Consumer Electronics Show in Berlin, Germany opened, Hisense exhibited "three-color laser projection family bucket" attracted the attention of media and tourists from all over the world.Since Hisense's young fashion brand Vidda launched a series of three-color laser projection, its accumulation based on three-color laser technology is competing globally and has become a...

    2023-09-04
    Zobacz tłumaczenie