Polski

XLight raises $40 million in financing to develop new EUV light sources

1002
2025-07-23 10:48:24
Zobacz tłumaczenie

xLight, a US startup aiming to commercialize particle accelerator driven free electron lasers (FELs) for use in semiconductor production, says it has raised $40 million in a series B round of venture funding.

The Palo Alto, California, firm said that the support would enable it to develop a prototype next-generation light source capable of emitting at extreme ultraviolet (EUV) wavelengths that are currently used to produce the most advanced semiconductor devices. That prototype is expected to be operational in 2028.

 


xLight's executive team


While the Dutch equipment company ASML has cornered the market with its EUV lithography systems based around complex plasma sources produced using a combination of high-power carbon dioxide and other lasers, xLight’s approach is fundamentally different.

“We have designed – and are now building – the world’s most powerful FEL lasers to serve as a new light source for advanced EUV lithography,” it claims. “Our new source will replace the current laser-produced plasma (LPP) source, which is nearing its physical limits.”

Transformational source
xLight suggests that its FEL light source would be able to produce four times more EUV power than current LPP systems, potentially improving productivity and yield in future semiconductor wafer fabrication facilities.

The approach could also be used to provide EUV light to as many as 20 of ASML’s wafer patterning systems from a single source, in contrast to the current generation of EUV lithography systems, which each require their own laser-driven source.

The other key advantage is that the FEL approach would be able to shift to even shorter wavelengths of light than the 13.5 nm photons produced by today’s LPP systems.

Nicholas Kelez, currently both CEO and CTO at xLight, was previously chief engineer for the Linac Coherent Light Source (LCLS), a three-mile-long x-ray free electron facility for ultrafast science at Stanford's SLAC National Lab.

He said: “xLight is on a mission to build a transformational new light source for semiconductor manufacturing that addresses the key challenges facing the industry today - cost, capabilities, and capacity. This round will equip the company with the capital needed to complete detailed design and kickstart construction of our full-scale prototype.

“Advanced semiconductor manufacturing is approaching a key inflection point - together with our partners across the National Lab and semiconductor ecosystem, and with the support of our investors, we will commercialize free electron lasers and help reclaim American leadership in semiconductor manufacturing.”

ASML connection
FELs use electrons initially produced by a particle accelerator, which are then passed through magnetic “undulators” to generate high-intensity beams of coherent light.

“Our system’s programmable light characteristics will enable the shorter wavelengths of light, which will enable the extension of Moore’s law for decades,” claims xLight, adding that it has already established a working relationship with “technical leaders” at ASML.

That connection may be thanks to the presence of former Intel CEO Pat Gelsinger, who is now both executive chairman of the xLight board and a general partner at venture firm Playground Global, which led the series B investment and has also invested in co-packaged optics developer Ayar Labs.

“xLight represents a once-in-a-generation opportunity to restore American leadership in one of the most critical technologies underpinning the semiconductor industry,” said Gelsinger in a statement announcing the funding.

“By delivering an energy‑efficient EUV laser with tenfold improvements over existing technologies, xLight has the potential to drive the next era of Moore’s law - keeping chip scaling alive, accelerating fab productivity, and anchoring this foundational capability in the US supply chain.”

While the current EUV source technology is owned by ASML, it was originally developed in the US by the company Cymer, which is based near San Diego and originally specialized in excimer lasers for lithography before advancing EUV sources. It was acquired by ASML in 2013, for just under €2 billion.

Source: optics.org

Powiązane rekomendacje
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    Zobacz tłumaczenie
  • In situ bubble point measurement using spectroscopy

    Develop and research a new downhole bubble point pressure measurement technology suitable for black oil and volatile oil to enhance well analysis using spectroscopy.Representative fluid characteristics are required for a wide range of oilfield lifespans, such as the initial scale and production planning of reservoir hydrocarbon reserves. Fluid characteristics are usually obtained from laboratory s...

    2024-01-31
    Zobacz tłumaczenie
  • Innovating Photonics: Lithium Tantalate Provides Power for the Next Generation of Optoelectronic Circuits

    The new photonic integrated circuit technology based on lithium tantalate has improved cost efficiency and scalability, making significant progress in the fields of optical communication and computing.The rapid development of photonic integrated circuits (PICs) has revolutionized optical communication and computing systems, combining multiple optical devices and functions on a single chip.For deca...

    2024-05-14
    Zobacz tłumaczenie
  • Marvel Fusion announces completion of € 50 million B+round funding

    On March 28th, Marvel Fusion, a laser fusion company from Munich, Germany, announced the completion of a B+round financing of 50 million euros, bringing the total amount of this round of financing to 113 million euros. It is reported that the company's cumulative financing has reached 385 million euros, making it the largest fusion company in Europe in terms of financing scale. This capital incr...

    03-31
    Zobacz tłumaczenie
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    Zobacz tłumaczenie