Polski

NKT Photonics utilizes fiber lasers to achieve deep space communication links

540
2025-07-21 10:31:02
Zobacz tłumaczenie

On July 7, the European Space Agency (ESA), established Europe’s first deep-space optical communication link with NASA’s Psyche mission using a high-power fiber laser system supplied by NKT Photonics, a subsidiary of Hamamatsu.
NKT’s announcement stated, “This achievement, conducted with NASA/JPL’s Deep Space Optical Communications (DSOC) demonstrator, marks a significant leap forward in high-data-rate communication across vast interplanetary distances.”


ESA’s multi-beam high-power fiber laser transmission system


The link is the result of collaboration between ESA, NASA/JPL, and a consortium of including NKT Photonics. The major technical challenges that were overcome have created a laser with enough power to be detected at extremely large distances, a pointing system with enough precision to aim accurately at the spacecraft an equally precise receiver system sensitive enough to detect the extremely faint return signals.

In collaboration with Swiss General Atomics Synopta, NKT Photonics supplied the multi-beam high-power fiber laser system, and the beam transmit system. The laser system emits a narrow-linewidth, modulated signal so that the distant spacecraft can precisely locate the ground station and lock onto it, establishing an optical link for high-speed data downlink.


ESA’s Ultima project


Located at the Kryoneri Observatory in Greece, the transmitter generates a multi-kilowatt beam capable of detection by the DSOC flight transceiver onboard the Psyche spacecraft, currently 265 million km distant, en route to the metal-rich 16 Psyche asteroid.

Laser system
The core of the laser system is based on NKT Photonics’ Koheras single-frequency fiber laser platform. The base for the configuration is an Acoustik line card sub-rack housing the Basik Y10 seed laser, a Boostik pre-amplifier as well as both AOM and EOM line cards used for spectral pre-conditioning and high frequency amplitude modulation. A splitter sends the signal to the five Boostik UHP high power amplifiers to bring the power up to the kW level needed to reach the spacecraft.

The bespoke amplifiers are based on NKT Photonics’ core fiber amplifier technology, also used in their directed energy activities but modified to enable high speed power modulation from 0 to 2 kW in less than 10 µs. Finally, a bespoke timing module line card provides all the timing and synchronization waveforms for the various beacon and data-uplink scenarios including the modem interface.

The beam transmit system’s precision allows it to point with arcsecond precision to the spacecraft, enabling both a beacon for accurate downlink and the potential to uplink data, providing a glimpse into the future of deep space communication.

Mike Yarrow, Senior Engineering Manager at NKT Photonics, said, “Our expertise in fiber laser technology has allowed us to contribute to a system that pushes the boundaries of what’s possible in free space optical communications. This project not only showcases our ability to deliver unprecedented power and precision to meet our customers’ stringent requirements but also reinforces our commitment to forging successful collaborations and advancing knowledge to benefit society as a whole.”

Source: optics.org

Powiązane rekomendacje
  • Polyart Launches New Generation Polyart Laser Synthetic Paper

    Polyart has launched a new generation of Polyart laser printers, designed specifically for dry toner printing technology, with a completely improved coating formula and many exciting new advantages. These include reducing nationalism, moisture resistance, and better paper touch.Say hello to the good paper jogging on the printer output. More importantly, our new formula provides better scratch resi...

    2023-11-16
    Zobacz tłumaczenie
  • Making Infrared Light Visible: New Equipment Utilizes 2D Materials to Convert Infrared Light

    Infrared imaging and sensing technology can be used in various fields, from astronomy to chemistry. For example, when infrared light passes through a gas, sensing changes in light can help scientists identify specific properties of the gas. The use of visible light may not always achieve this sensing.However, existing infrared sensors are bulky and inefficient. In addition, due to the use of infra...

    2024-06-24
    Zobacz tłumaczenie
  • An advanced laser processing laboratory for semiconductor materials and an all solid-state advanced laser research center will be established here

    On October 15th, the Laipu Technology National Headquarters and Integrated Circuit Equipment R&D and Manufacturing Base project successfully held a groundbreaking ceremony in the Chengdu High tech Zone.Project Business CardTotal project investment:1.66 billion yuanProject area:Covering an area of 39 acres, with a construction area of 65000 square metersProject Planning:Construction will begin...

    2023-10-18
    Zobacz tłumaczenie
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    Zobacz tłumaczenie
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    Zobacz tłumaczenie