Nederlands

Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

782
2024-07-12 11:43:41
Bekijk vertaling

Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications".

Picosecond pulse lasers are often used for fundamental research in high-energy density physics. As a key component of picosecond laser systems, the laser damage threshold of mirrors directly affects the output energy of picosecond laser systems. Traditional picosecond laser mirrors use hafnium oxide and silicon oxide as high and low refractive index materials, respectively. In recent years, composite materials including nanostacks and mixtures have received widespread attention in improving the laser damage threshold of thin film components. The study of composite picosecond mirrors and their laser damage characteristics under different pulse widths of laser irradiation has certain practical application value.

Researchers have prepared four types of composite materials using electron beam evaporation technology, including hafnium oxide/aluminum oxide nanostack, hafnium oxide/silicon oxide nanostack, hafnium oxide aluminum oxide mixture, and hafnium oxide silicon oxide mixture. Compared with a single hafnium oxide material, composite materials can suppress crystallization and reduce surface roughness. Four types of reflective mirrors with working wavelengths at 1053 nm were prepared using the above-mentioned composite materials and silicon oxide materials as high and low refractive index materials. The damage test results of the mirror under different pulse widths (0.5 ps, 1 ps, 3 ps, and 8 ps) of laser irradiation show that compared with the picosecond mirror using hafnium oxide as the high refractive index material, the picosecond mirror using composite materials as the high refractive index material exhibits a higher laser damage threshold. Within the laser pulse range studied in this article, the initial laser damage mechanism of the reflector begins to change around 3 ps. This achievement is of great significance for improving the performance of optical thin film components such as picosecond laser reflectors.

Figure 1. AFM micrographs and RMS roughness of different mirrors, (b) laser-induced damage probability distribution (8 ps, 1053 nm)

Figure 2. Probability distribution of laser-induced damage with different pulse widths (a) 0.5 ps, (b) 1 ps, and (c) 3 ps; (d) The variation of laser damage threshold with laser pulse width

Note:
M-H refers to a picosecond mirror made of hafnium oxide, a high refractive index material;
M-N1 refers to a picosecond mirror with a high refractive index material of hafnium oxide/aluminum oxide nanostack;
M-N2 refers to a picosecond mirror with a high refractive index material of hafnium oxide/silicon oxide nanostack;
M-M1 refers to a picosecond mirror with a high refractive index material of hafnium oxide alumina mixture;
M-M2 refers to a picosecond mirror with a high refractive index material of hafnium oxide silicon oxide mixture.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Gerelateerde aanbevelingen
  • Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

    Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using ...

    2024-05-27
    Bekijk vertaling
  • Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

    On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang ...

    02-18
    Bekijk vertaling
  • Sivers will develop laser arrays for artificial intelligence and deliver prototypes in 2024

    Sivers Optics, a subsidiary of Sivers Semiconductors, has signed a product development agreement with an undisclosed company.Starting from the initial contract worth $1.3 million, the prototype will be delivered in 2024, and it is expected that the agreement will grow rapidly in 2025 before transitioning to mass production. After entering full production, customers expect the annual chip productio...

    2024-03-18
    Bekijk vertaling
  • Innoviz Technologies, a publicly listed laser radar company, has laid off approximately 9% of its workforce

    On February 5, 2025, Innoviz Technologies, an Israeli laser radar listed company, announced operational optimization measures to extend the duration of the company's cash reserve usage and accelerate profitability and free cash flow generation. To maximize efficiency, the company will reduce investment in developing mature areas. These measures will result in a reduction of approximately 9% in the...

    02-07
    Bekijk vertaling
  • Germany's TRUMPF launches 50000 watt fiber laser

    TRUMPF will launch a new generation of efficient fiber lasers at the Munich Light Expo in Germany, which can meet the diverse welding needs of the entire industry, such as high-precision welding of electric vehicle batteries. Tom Rentschler, Product Manager of TRUMPF Fiber Laser, said, "The new generation TruFiber laser is the core engine of our production solutions. Through deep collaboration wit...

    06-20
    Bekijk vertaling