Nederlands

New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

204
2024-07-08 14:48:44
Bekijk vertaling

Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the damage resistance performance of fused quartz components. The relevant research results were published in the International Journal of Mechanical Sciences under the title "Microsecond pulsed CO2 laser cleaning of high damage threshold fused silica".

With the development of modern optical technology, the problem of ultraviolet laser-induced damage to fused quartz components seriously restricts the development of high-power laser systems. At present, the contact polishing process inevitably produces defects and pollution, and it is difficult to completely remove them through post-treatment, greatly reducing the performance and lifespan of fused quartz components.

Principle and experimental schematic diagram of microsecond pulse CO2 laser cleaning
To this end, the research team revealed the modulation mechanism of defects and pollution on component damage performance through a multi-scale simulation method of macro micro nano scale. Through multimodal characterization of the distribution patterns of defects and contamination, it has been confirmed that laser cleaning can effectively eliminate and suppress surface/subsurface defects, absorption defects, chemical structural defects, and elemental contamination, without generating residual thermal stress and severely damaging the surface roughness of materials. The samples cleaned by laser showed a higher damage threshold compared to those processed by traditional processing techniques (mechanical chemical polishing, mechanical chemical polishing+magnetorheological polishing, mechanical chemical polishing+hydrofluoric acid etching). The damage threshold increased by 47.6% with a 0% probability and 27.0% with a 100% probability, respectively. The laser cleaning method proposed in this study provides a new approach for the low defect and clean manufacturing of fused quartz components.

The related work has received support from key research and development programs of the Ministry of Science and Technology, the National Natural Science Foundation of China, and the Shanghai Sailing Plan.

Source: Shanghai Institute of Optics and Mechanics

Gerelateerde aanbevelingen
  • Huashu High tech launches a large format 12 laser metal 3D printer at TCT Asia

    Chinese industrial 3D printer manufacturer Huashu High tech has launched the FS811M metal powder bed fusion series platform. The FS811M series has a construction volume of 840 x 840 x 960 millimeters and can be equipped with powerful 6, 8, 10, or 12 x 500 watt fiber lasers."As the latest member of the Huashu High tech Metal 3D printer product portfolio, FS811M originates from our joint innovation ...

    2024-05-13
    Bekijk vertaling
  • Lumentum Holdings changes CEO

    On February 3, 2025, Lumentum Holdings has appointed Michael Hurlston as its President, CEO, and Director, effective from February 7. Hurlston replaces Alan Lowe, who has been serving as the company's President and CEO since 2015. Lowe will continue to serve as a member of Lumentum's board of directors and as a consultant to the company.Lumentum is a major supplier of high-speed optical transceive...

    02-06
    Bekijk vertaling
  • Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

    Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The micr...

    2023-08-15
    Bekijk vertaling
  • LASER CHINA 2025 on-the-Spot, What New Technologies are Trending This Year?

    Every year, Shanghai is lit up with a “feast of light”, that is LASER World of PHOTONICS CHINA, which has lasted for 20 years and become an arena for global photoelectric enterprises to display and compete, instead of just an exhibition hall of devices. Chanelink team visited all these halls for laser technology, thoroughly learning the cutting-edge trends in photoelectric industry.As a technical...

    03-19
    Bekijk vertaling
  • Low noise! Switzerland develops a new type of laser

    According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.Small laser system (I...

    2024-07-03
    Bekijk vertaling