Nederlands

Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

977
2024-05-27 16:04:49
Bekijk vertaling

Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.

Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using light.

Spin coherence refers to the ability of electron spins to retain quantum information over time. This discovery is of great significance because materials that can exhibit quantum properties under environmental conditions are very rare.

The research results published in the journal Natural Materials further confirm that the spin coherence available at room temperature is longer than researchers initially imagined. "The results indicate that once we write a quantum state onto the spin of these electrons, this information will be stored for~millionths of a second, making the system a very promising platform for quantum applications," said Carmem M. Gilardoni, co-author of the paper and postdoctoral researcher Rubicon at Cavendish Lab.

This may seem short, but interestingly, this system does not require special conditions - it can even store spin quantum states at room temperature and does not require a large magnet.

Characteristics of hexagonal boron nitride

Hexagonal boron nitride (hBN) is an ultra-thin material composed of stacked single atom thick layers, resembling a piece of paper. These layers are bonded together through intermolecular forces. But sometimes, there are "atomic defects" in these layers, similar to crystals in which molecules are trapped. These defects can absorb and emit light within the visible light range, and have clear optical transitions, and they can act as local traps for electrons. Due to these "atomic defects" in hBN, scientists can now study the behavior of these captured electrons. They can study spin properties, which allow electrons to interact with a magnetic field. What is truly exciting is that researchers can use the light in these defects to control and manipulate electron spin at room temperature.

This discovery paves the way for future technological applications, especially in sensing technology.

However, as this is the first time anyone has reported the spin coherence of the system, there is still a lot of research to be done before it matures enough for technical applications. Scientists are still studying how to make these defects better and more reliable. They are currently exploring to what extent we can extend spin storage time and whether we can optimize system and material parameters that are important for quantum technology applications, such as the stability of defects over time and the quality of light emitted by the defect.

Future Outlook and Conclusion

"The use of this system has emphasized the power of basic material research to us. As for the hBN system, as a field, we can use the excited state dynamics in other new material platforms for future quantum technology," said Dr. Hannah Stern, the first author of the paper, who conducted this research in the Cavendish Laboratory and is now a researcher at the Royal Society University and a lecturer at the University of Manchester.

In the future, researchers are considering further developing the system to explore many different directions from quantum sensors to secure communication.

"Every promising new system will broaden the toolkit of available materials, and every step towards this direction will drive the scalable implementation of quantum technology. These results confirm the prospects of layered materials achieving these goals," concluded Professor Mete Atat ü re, the head of the Cavendish Laboratory leading the project.

Source: Focus Media Network

Gerelateerde aanbevelingen
  • China University of Science and Technology has made significant progress in the field of pure red perovskite light-emitting diodes

    Recently, four research groups from the University of Science and Technology of China, namely Yao Hongbin, Fan Fengjia, Lin Yue, and Hu Wei, have collaborated to make significant progress in the field of pure red perovskite light-emitting diodes (LEDs). The team independently invented the Electrical Excitation Transient Spectroscopy (EETA) technology and used it to reveal that hole leakage is the ...

    05-12
    Bekijk vertaling
  • Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

    Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal o...

    2023-09-15
    Bekijk vertaling
  • In the development of modern electronic welding technology, the application advantages of laser soldering process

    With the rapid development of modern electronic information technology, integrated circuit chip packaging forms are also emerging in an endless stream, and the package density is getting higher and higher, which greatly promotes the development of electronic products to multi-function, high performance, high reliability and low cost.So far, through hole technology (THT) and surface mount technolog...

    2023-09-13
    Bekijk vertaling
  • LASER CHINA 2025 on-the-Spot, What New Technologies are Trending This Year?

    Every year, Shanghai is lit up with a “feast of light”, that is LASER World of PHOTONICS CHINA, which has lasted for 20 years and become an arena for global photoelectric enterprises to display and compete, instead of just an exhibition hall of devices. Chanelink team visited all these halls for laser technology, thoroughly learning the cutting-edge trends in photoelectric industry.As a technical...

    03-19
    Bekijk vertaling
  • Stratasys announces Q3 2024 financial report, with a net loss of $26.6 million

    Stratasys (Nasdaq: SSYS) has announced its earnings for the third quarter of 2024, indicating a bright future for the company. The company is increasing profits and gross margins by cutting costs and focusing more on rapidly growing industries such as aerospace, automotive, defense, medical equipment, and dentistry. CEO Yoav Zeif shared that the new F3300 3D printer has performed well in the marke...

    2024-11-15
    Bekijk vertaling