Nederlands

Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

517
2024-05-27 16:04:49
Bekijk vertaling

Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.

Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using light.

Spin coherence refers to the ability of electron spins to retain quantum information over time. This discovery is of great significance because materials that can exhibit quantum properties under environmental conditions are very rare.

The research results published in the journal Natural Materials further confirm that the spin coherence available at room temperature is longer than researchers initially imagined. "The results indicate that once we write a quantum state onto the spin of these electrons, this information will be stored for~millionths of a second, making the system a very promising platform for quantum applications," said Carmem M. Gilardoni, co-author of the paper and postdoctoral researcher Rubicon at Cavendish Lab.

This may seem short, but interestingly, this system does not require special conditions - it can even store spin quantum states at room temperature and does not require a large magnet.

Characteristics of hexagonal boron nitride

Hexagonal boron nitride (hBN) is an ultra-thin material composed of stacked single atom thick layers, resembling a piece of paper. These layers are bonded together through intermolecular forces. But sometimes, there are "atomic defects" in these layers, similar to crystals in which molecules are trapped. These defects can absorb and emit light within the visible light range, and have clear optical transitions, and they can act as local traps for electrons. Due to these "atomic defects" in hBN, scientists can now study the behavior of these captured electrons. They can study spin properties, which allow electrons to interact with a magnetic field. What is truly exciting is that researchers can use the light in these defects to control and manipulate electron spin at room temperature.

This discovery paves the way for future technological applications, especially in sensing technology.

However, as this is the first time anyone has reported the spin coherence of the system, there is still a lot of research to be done before it matures enough for technical applications. Scientists are still studying how to make these defects better and more reliable. They are currently exploring to what extent we can extend spin storage time and whether we can optimize system and material parameters that are important for quantum technology applications, such as the stability of defects over time and the quality of light emitted by the defect.

Future Outlook and Conclusion

"The use of this system has emphasized the power of basic material research to us. As for the hBN system, as a field, we can use the excited state dynamics in other new material platforms for future quantum technology," said Dr. Hannah Stern, the first author of the paper, who conducted this research in the Cavendish Laboratory and is now a researcher at the Royal Society University and a lecturer at the University of Manchester.

In the future, researchers are considering further developing the system to explore many different directions from quantum sensors to secure communication.

"Every promising new system will broaden the toolkit of available materials, and every step towards this direction will drive the scalable implementation of quantum technology. These results confirm the prospects of layered materials achieving these goals," concluded Professor Mete Atat ü re, the head of the Cavendish Laboratory leading the project.

Source: Focus Media Network

Gerelateerde aanbevelingen
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Bekijk vertaling
  • The company has made key breakthroughs in the development of laser micromachining systems

    3D-Micromac AG, a provider of laser micromachining systems, has announced new advances in laser micromachining solutions for magnetic sensors, micro-leds, manufactured power devices and advanced packaging of semiconductors.Since the first working laser came out more than 60 years ago, lasers have been widely used in the industrial market. Uwe Wagner, CEO of 3D-Mircomac, said: "In the semic...

    2023-08-04
    Bekijk vertaling
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    Bekijk vertaling
  • TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

    TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.This upgrade ...

    2023-08-21
    Bekijk vertaling
  • GOLDEN laser die-cutting machine will be exhibited at UPAKEXPO 2024

    At the UpakExpo 2024 exhibition to be held in Moscow at the end of January, Chinese company Golden Laser will showcase for the first time two laser die-cutting machines focused on the printing, labeling, and packaging markets in Russia.The Golden Laser LC350 is a web machine designed to handle labels printed on digital and flexographic printing machines. It can cut, die cut, and kiss cut paper, pl...

    2024-01-12
    Bekijk vertaling