Nederlands

The research team establishes synthetic dimensional dynamics to manipulate light

360
2024-03-20 15:57:41
Bekijk vertaling

In the field of physics, the synthetic dimension has become one of the forefront of active research, providing a way to explore phenomena in high-dimensional space, surpassing our traditional 3D geometric space. This concept has attracted great attention, especially in the field of topological photonics, as it has the potential to unlock rich physics that traditional dimensions cannot reach.

Researchers have proposed various theoretical frameworks to study and implement SDs, aiming to utilize phenomena such as synthetic gauge fields, quantum Hall physics, discrete solitons, and four-dimensional or higher dimensional topological phase transitions. These suggestions may lead to a new fundamental understanding of physics.

One of the main challenges in traditional three-dimensional space is to experimentally achieve complex lattice structures with specific coupling. SD provides a solution that provides a more accessible platform for creating complex resonator networks with anisotropic, long-range, or dissipative coupling. This ability has led to groundbreaking demonstrations of non Hermitian topological entanglement, parity check time symmetry, and other phenomena.

Various parameters or degrees of freedom in the system, such as frequency mode, spatial mode, and orbital angular momentum, can be used to construct SD and are expected to be applied in various fields, from optical communication to topological insulator lasers.

A key goal in this field is to build a "utopian" resonator network where any pair of modes can be coupled in a controlled manner. To achieve this goal, precise mode manipulation is required in the photon system, providing a way to enhance data transmission, energy collection efficiency, and laser array radiation.

Now, as reported in Advanced Photonics, an international research team has created customizable waveguide arrays to establish synthetic modal dimensions. This advancement allows for effective control of light in photonic systems without the need for complex additional features such as nonlinearity or non closure.

Professor Chen Zhigang from Nankai University pointed out that the ability to adjust different light modes within the system takes us one step closer to achieving a 'utopian' network, where all experimental parameters are completely controllable.

In their work, researchers modulated perturbations of propagation that matched the differences between different light modes. To this end, they used artificial neural networks to design waveguide arrays in real space. After training, artificial neural networks can create waveguide settings with the desired mode patterns. These tests help reveal how light propagates and is limited within the array.

Finally, the researchers demonstrated the use of artificial neural networks to design a special type of photonic lattice structure called Su Schrieffer Heeger lattice. This lattice has specific functions and can topologically control the light of the entire system. This allows them to change the volume mode of light propagation and demonstrate the unique characteristics of their synthesized size.

The impact of this work is enormous. By fine-tuning the waveguide distance and frequency, researchers aim to optimize the design and manufacturing of integrated photonic devices.

Professor Hrvoje Buljan from the University of Zagreb said, "In addition to photonics, this work also provides a glimpse into geometrically difficult physics. It brings broad prospects for applications ranging from mode lasers to quantum optics and data transmission.".

Chen and Buljan both pointed out that the interaction between topological photonics driven by artificial neural networks and synthetic dimension photonics has opened up new possibilities for discovery, which may lead to unprecedented material and device applications.

Source: Laser Net

Gerelateerde aanbevelingen
  • MKS Malaysia Penang Supercenter Factory Holds Groundbreaking Ceremony

    Recently, MKS Instruments held a groundbreaking and celebration ceremony for its Supercenter factory in Penang, Malaysia.This important moment has been witnessed jointly by the Malaysian Investment Development Authority (MIDA) and Invest Penang, which will help meet the growing demand for semiconductor equipment for wafer manufacturing in the region and globally. This advanced factory, covering ...

    2024-11-01
    Bekijk vertaling
  • Intel installs the first EUV manufacturing tool that can emit lasers hotter than the sun

    Chip giant Intel announced that it has completed the assembly work of the world's first commercial high numerical aperture (NA) extreme ultraviolet lithography (EUV) scanner. This device greatly improves the resolution and feature scaling of next-generation chips by changing the optical design used to project printed images onto silicon wafers.This lithography equipment weighing 150 tons has been ...

    2024-04-22
    Bekijk vertaling
  • Making Infrared Light Visible: New Equipment Utilizes 2D Materials to Convert Infrared Light

    Infrared imaging and sensing technology can be used in various fields, from astronomy to chemistry. For example, when infrared light passes through a gas, sensing changes in light can help scientists identify specific properties of the gas. The use of visible light may not always achieve this sensing.However, existing infrared sensors are bulky and inefficient. In addition, due to the use of infra...

    2024-06-24
    Bekijk vertaling
  • Shanghai Optical Machinery Institute has made progress in laser assisted connection of metal carbon fiber composite heterojunction materials

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in the laser assisted connection of metal carbon fiber composite heterostructure joints.The team used an adjustable flat top rectangular semiconductor laser as a heat source to achieve...

    2023-09-01
    Bekijk vertaling
  • Smaller laser facilities use new methods to break records before proton acceleration

    The Helmholtz Dresden Rosendorf Center (HZDR) has made significant progress in laser plasma acceleration. By adopting innovative methods, the research team successfully surpassed previous proton acceleration records significantly.They obtained energy for the first time that can only be achieved in larger facilities so far. As reported by the research team in the journal Nature Physics, promising a...

    2024-05-15
    Bekijk vertaling