Nederlands

Probe organization of photoacoustic devices using low-cost laser diodes

819
2024-03-06 14:13:44
Bekijk vertaling

Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.

By providing a cost-effective organizational diagnostic approach, compact PA sensing instruments can bridge the gap between PA research and its practical applications. This instrument is the work of a research group at the Indian Institute of Technology Indore.

Researchers integrated multiple laser diodes for PA excitation in a compact housing and developed a pulse current supply unit that can induce the laser diode to generate 25 ns of current pulses at a frequency of 20 kHz. They characterize the optical semiconductor laser tube casing and power supply unit based on pulse width, laser intensity, and repeatability of multiple laser diodes.

In order to improve signal strength, the team concentrated the laser diodes in the casing at one point. This enhances the amplitude of the PA signal and improves the signal-to-noise ratio. The amplitude of the time-domain PA signal indicates that as the number of laser diodes increases, the light energy increases.

Researchers compared laser diode based PA systems with traditional Nd: YAG laser based PA systems and found that these systems exhibited similar PA responses. The amplitude of the acoustic spectrum indicates that the new PA sensing instrument is effective for traditional PA settings.
The team used a compact PA sensing system to study fibrocystic changes in the breast in vitro. Researchers analyzed the spectrum of PA signals to quantitatively evaluate tissue characteristics.

The system distinguishes tissue types based on quantitative spectral parameters. The PA spectral response reveals different spectral patterns corresponding to different tissue types. Compared with normal breast tissue, fibrocystic breast disease tissue exhibits higher dominant frequency peaks and energy.

Fibrocystic breast disease samples exhibit dominant frequency peaks around 1.60 MHz, indicating an increase in tissue density due to increased glandular and stromal elements. In contrast, normal breast tissue shows a lower peak frequency of 0.26 MHz, reflecting its fiber and fat composition. The histopathological examination confirmed these findings and confirmed the correlation between spectral response and tissue characteristics. Researchers also used the system to associate PA spectral parameters with the elastic properties of fibrocystic breast disease tissue compared to normal breast parenchymal tissue samples.

Ultrasound and mammography are currently the most common diagnostic methods for breast diseases, followed by fine needle aspiration cytology. Due to the accuracy issues of these imaging methods, an alternative screening technique is needed to enable clinical doctors to have a deeper understanding of disease diagnosis than traditional methods.

The experimental results indicate that PA sensing instruments can provide a fast, reliable, and non-invasive method to evaluate tissue density and identify pathological changes in breast tissue, thereby enabling more timely intervention and improving results.

The use of advanced signal processing technology and high-frequency transducers can enhance the real-time and in vivo research capabilities of the system, thereby expanding its clinical practicality. In the future, laser diodes of different wavelengths can be merged into the same optical shell to study biological tissues of various wavelengths.
The study was published in the Journal of Biomedical Optics.

Source: Laser Net



Gerelateerde aanbevelingen
  • Industrial laser giant Coherent receives $33 million investment

    Recently, according to media reports, industrial laser giant Coherent has signed a "preliminary terms memorandum" with the US Department of Commerce, which will receive up to $33 million in investment under the Chip and Science Act.It is reported that the funds will mainly be used to support the modernization and expansion project of the cutting-edge manufacturing cleanroom in Coherent's existing ...

    2024-12-12
    Bekijk vertaling
  • The 20th Wuhan Optoelectronics Expo 2025 to Open Grandly

    From May 15 to 17, 2025, the 20th Wuhan Optoelectronics Expo will be held grandly at the China Optics Valley Convention and Exhibition Center in Wuhan. With the theme "Light Connects Everything, Intelligence Leads the Future," this year's expo will focus on six major fields: laser technology and applications, optics and precision optics, information communication and semiconductors, automotive opt...

    03-14
    Bekijk vertaling
  • Xinjiang Institute of Physical and Chemical Technology has established the largest database of computational nonlinear optical crystal materials to date

    Modern laser technology urgently requires nonlinear optical materials that can generate coherent light through second harmonic generation. However, only a small portion of the nonlinear optical properties of non centrosymmetric crystal materials have been experimentally or theoretically studied, and exploration for high-performance nonlinear optical crystal materials is still very limited.Recentl...

    2023-10-24
    Bekijk vertaling
  • Fraunhofer ILT has developed a process for forming hard material components using USP laser technology

    Tools made of hard materials are very wear-resistant, but the tools used to produce these tools are prone to wear and tear. Laser tools are the solution. Researchers at the Fraunhofer Institute for Laser Technology (ILT) have developed a process chain that can use ultra short pulse (USP) lasers to shape and polish hard material components without the need to replace clamping devices.Drills, millin...

    10-17
    Bekijk vertaling
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    Bekijk vertaling