Nederlands

Fraunhofer ILT has developed a process for forming hard material components using USP laser technology

110
2025-10-17 10:32:57
Bekijk vertaling

Tools made of hard materials are very wear-resistant, but the tools used to produce these tools are prone to wear and tear. Laser tools are the solution. Researchers at the Fraunhofer Institute for Laser Technology (ILT) have developed a process chain that can use ultra short pulse (USP) lasers to shape and polish hard material components without the need to replace clamping devices.

Drills, milling heads, rollers, and even punch inserts made of ceramic hard materials not only bite into the workpiece, but also last significantly longer. Yet the same wear resistance that makes them so durable in production becomes a major challenge during their manufacture. The tools used to shape and finish them find the mixed-carbide hard metals, cermets, and ceramics a tough nut to crack — and wear rates are correspondingly high when mechanical processing methods are used.

 



Butterfly effect


USP lasers work where mechanical processes flag

This is different with ultrashort laser pulses. Even commercially available USP lasers with a power of 20 to 40 W are capable of efficiently removing the hard materials used in toolmaking. The material vaporizes where their high-energy pulses – lasting just a few picoseconds – hit the surface. Since this happens at frequencies in the megahertz range, laser material ablation reaches surface rates of up to 100 cm2 per minute.

But the potential of USP processing is not limited to forming materials by vaporizing them. Researchers at the ILT have developed a process chain in which the same USP laser not only forms and structures via ablation, but also subsequently polishes the tool surfaces.

“The USP laser is a universal tool we use to conduct various processing steps, sometimes in the same clamping operation,” said Sönke Vogel, team leader for 3D Structural Ablation at the ILT, who has been driving the process forward together with Astrid Saßmannshausen, team leader for Structuring of Transparent Materials.

The key to linking the process steps lies in the parameterization of the laser: While material is ablated with high pulse energy and a low repetition rate, the opposite is true for polishing. The USP laser introduces energy into the surface of the workpiece at a pulse frequency of up to 50 MHz, where this energy accumulates and only melts the top 0.2–2.0 µm.
The material does not vaporize, but forms a molten film that smooths itself out due to surface tension and solidifies as it cools. The surface properties can also be controlled via the process control. “With USP laser polishing, for example, it is possible to smooth out micro-irregularities while retaining macroscopic structures,” said Saßmannshausen.

In addition, the laser process makes it possible to polish complex 3D surfaces with micrometer precision. Specific areas can be selectively treated to adjust surface properties locally or to finish only the necessary zones — saving time in the process.

 


Mold tool: first USP-structured, then polished with the same laser


Efficient hard material machining

Depending on the process requirements, laser polishing achieves surface rates of ten to 100 cm2 per minute, which is almost on par with the surface rates of the preceding material ablation. “The combination of both processes with a laser in the same clamping operation enables companies to expand their range of services with existing USP lasers or to significantly accelerate the amortization of a new purchase,” said Saßmannshausen.

Above all, however, it is suitable for replacing mechanical processes for machining hard materials, thus putting an end to the sometimes immense tool wear involved in their manufacture. This not only reduces costs, but also specifically improves resource and energy efficiency in practice.

Source: optics.org

Gerelateerde aanbevelingen
  • Korean laser company AP Systems establishes new AVP equipment division

    Recently, AP Systems, a well-known laser manufacturer in South Korea, established a new AVP equipment division for the advanced packaging field. This business unit will focus on laser equipment required for advanced packaging processes of high bandwidth memory (HBM).AP Systems is a subsidiary of APS Group, mainly focused on the fields of display and semiconductor laser processing equipment. It foc...

    01-15
    Bekijk vertaling
  • Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale la...

    2023-10-12
    Bekijk vertaling
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    Bekijk vertaling
  • Personnel changes at Optimax, a precision optical manufacturer

    On November 25th, Optimax, the largest precision optics manufacturer in the United States, announced the appointment of Joseph Spilman as CEO and Pete Kupinski as President. After developing a comprehensive succession plan, Optimax CEO Rick Plympton will retire along with President and Founder Mike Mandina.Mandina stepped down in 2021 and passed on the title of CEO to Spilman, strategically appo...

    2024-11-28
    Bekijk vertaling
  • Enhanced dielectric, electrical, and electro-optic properties: investigation of the interaction of dispersed CdSe/ZnS quantum dots in 8OCB liquid crystals in the intermediate phase

    authorElsa Lani, Aloka SinhaabstractAt present, the progress in developing new liquid crystal materials for next-generation applications mainly focuses on improving the physical properties of liquid crystal systems.Recent research progress has shown that functionalized nanoparticles embedded in LC matrix can significantly alter the properties of LC materials based on the interaction between host m...

    2024-03-04
    Bekijk vertaling