Nederlands

Micro active vortex laser

664
2023-10-24 15:09:49
Bekijk vertaling

Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.

This achievement was jointly completed by the team of academician Gu Min and associate professor Fang Xinyuan of the Photonic Chip Research Institute and the Institute of Microelectronics of the Chinese Academy of Sciences. Academician Gu Min, associate professor Fang Xinyuan, associate researcher Pan Guanzhong and associate researcher Xun Meng of the Institute of Microelectronics of the Chinese Academy of Sciences are the corresponding authors of this article, and Shanghai University of Technology is the first unit.

With the rapid development of artificial intelligence and big data, the amount of data generated by humans every day is also increasing exponentially. Achieving high-capacity information reuse is an effective way to cope with future high data throughput applications. Vortex light with spiral phase wavefronts carries orbital angular momentum, and the infinite orthogonality of orbital angular momentum (OAM) can be used in various optical information multiplexing technologies to significantly improve information capacity, including optical communication, holography, optical artificial intelligence, optical encryption, optical storage, etc.

Vortex optical lasers have been widely studied as emission devices for orbital angular momentum optical information. Among them, achieving on chip and micro vortex lasers is crucial for the chip and integrated development of vortex light reuse technology, which can truly promote the industrial implementation of these technologies. However, existing active micro vortex lasers are difficult to generate high-order vortex light (topological charges are generally less than 5), and the key reason is the limited output area of the light source, which leads to insufficient resolution of the integrated orbital angular momentum phase structure and restricts the improvement of spatial bandwidth product. The higher the topological charge, the more channels it is possible to achieve orbital angular momentum information reuse. Therefore, this problem seriously restricts the capacity improvement of information reuse on orbital angular momentum chips.

In this study, the author proposes a vertical cavity surface emission vortex laser based on laser nano 3D printing integrated orbital angular momentum phase structure, which has the advantages of small volume, high speed, low threshold, circular light field, vertical light output, and arrayability. The author integrated a micro orbital angular momentum phase structure into the surface of a vertical cavity surface emitting laser through laser printing, thereby transforming the Gaussian beam emitted by the laser into a vortex beam after being modulated by the phase structure. The method of laser printing can expand the effective illumination area of the orbital angular momentum phase structure, thereby increasing the spatial bandwidth product. At the same time, laser 3D printing has higher manufacturing efficiency than previous methods, with a single device printing time of only about 20 minutes, compared to several hours with previous methods. In the article, the author implemented an addressable vortex laser array with topological charges ranging from 1 to 5, with a single device size of only about 100 micrometers × 100 microns.

In this article, the author further improved the spatial bandwidth product by designing a 3D structured, cascaded spiral phase plate (SPP), and successfully achieved a vortex beam with a maximum topological charge of 15. This study has solved the problem of increasing the topological charge of micro vortex optical lasers, and is expected to promote the miniaturization and integration development of orbital angular momentum information multiplexing technology.

This work has received support from units such as the National Natural Science Foundation of China and the Shanghai Municipal Science and Technology Commission.

Paper link: https://pubs.acs.org/doi/full/10.1021/acs.nanolett.3c02938

Source: Guangxing Tianxia


Gerelateerde aanbevelingen
  • Narrow band tunable terahertz lasers may change material research and technology

    A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.By tuning the light source to 10...

    2023-11-21
    Bekijk vertaling
  • The innovative application of carbon fiber laser cutting in the aircraft fuselage can significantly reduce the overall weight and reduce fuel consumption

    As one of the important means of transportation in modern society, the safety and performance of aircraft have always been the focus of attention. Behind the continuous pursuit of technological breakthroughs in the aviation industry, carbon fiber materials, as a lightweight and high-strength material, are gradually emerging in the application of aircraft fuselage.Combined with the application of ...

    2023-08-23
    Bekijk vertaling
  • GOLDEN laser die-cutting machine will be exhibited at UPAKEXPO 2024

    At the UpakExpo 2024 exhibition to be held in Moscow at the end of January, Chinese company Golden Laser will showcase for the first time two laser die-cutting machines focused on the printing, labeling, and packaging markets in Russia.The Golden Laser LC350 is a web machine designed to handle labels printed on digital and flexographic printing machines. It can cut, die cut, and kiss cut paper, pl...

    2024-01-12
    Bekijk vertaling
  • Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

    In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.Laser devices operating...

    02-21
    Bekijk vertaling
  • Measurement of Fine Structure and Spin Interaction of Quantum Materials through TriVista High Resolution Spectral Measurement System

    backgroundThe Jörg Debus team from the Technical University of Dortmund in Germany is dedicated to researching optical quantum information processing and quantum sensing in materials with potential applications. The team mainly studies the fine structure of materials under light fields, such as quantum dots, quantum effects of two-dimensional materials, semiconductor defects in diamonds, and ...

    2024-03-11
    Bekijk vertaling