Nederlands

Outlook - Future of miniaturized lasers

485
2023-12-19 18:10:39
Bekijk vertaling

The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.

In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks were also very obvious. The welding threshold was high, the efficiency was low, and the subsequent polishing and polishing were complex. Especially, the strong arc radiation generated was harmful to the operator's health. With the launch of miniaturized fiber lasers, the handheld laser welding market has also experienced explosive growth, and now this market has begun to take shape.

 

In the field of industrial lasers, the importance of miniaturization trends in fiber lasers is beyond doubt. We are also well aware that miniaturization has always been a turning point in every technological advancement, such as in mobile phones, computers, and semiconductors. I believe that miniaturization will also be a necessary path for the advancement of lasers. With smaller size and higher integration, it means greater portability, richer application scenarios, and greater benefits for end users.

Imagine what kind of impact the palm sized high-energy laser on Iron Man's arm would have on the entire laser manufacturing industry and even the entire technology field? To what extent will laser weapons, cutting machines, and handheld welding machines evolve? Nowadays, semiconductors and computers continue to evolve towards miniaturization. Who dares to assert that miniaturization and lightweighting of lasers are meaningless? Looking forward to breakthroughs in laser technology bringing dividends to many fields, and the future of the laser industry is promising!

Gerelateerde aanbevelingen
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    Bekijk vertaling
  • New photon avalanche nanoparticles may usher in the next generation of optical computers

    A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab), Columbia University, and Autonomous University of Madrid has successfully developed a novel optical computing material using photon avalanche nanoparticles. This breakthrough achievement was recently published in the journal Nature Photonics, paving the way for the manufacture of optical memory and transistors at the nano...

    02-28
    Bekijk vertaling
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    Bekijk vertaling
  • Outstanding Optical Technologies at the 2025 Western Optoelectronics Exhibition in the United States

    In the long history of technological development, every major breakthrough in technology is like a shining star, illuminating the path forward for humanity. At the Photonics West conference in 2025, numerous breakthroughs in cutting-edge photonics technologies attracted the attention of the global academic and industrial communities. Several important technological advancements reported in this ex...

    02-12
    Bekijk vertaling
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Bekijk vertaling