Nederlands

XLight raises $40 million in financing to develop new EUV light sources

1001
2025-07-23 10:48:24
Bekijk vertaling

xLight, a US startup aiming to commercialize particle accelerator driven free electron lasers (FELs) for use in semiconductor production, says it has raised $40 million in a series B round of venture funding.

The Palo Alto, California, firm said that the support would enable it to develop a prototype next-generation light source capable of emitting at extreme ultraviolet (EUV) wavelengths that are currently used to produce the most advanced semiconductor devices. That prototype is expected to be operational in 2028.

 


xLight's executive team


While the Dutch equipment company ASML has cornered the market with its EUV lithography systems based around complex plasma sources produced using a combination of high-power carbon dioxide and other lasers, xLight’s approach is fundamentally different.

“We have designed – and are now building – the world’s most powerful FEL lasers to serve as a new light source for advanced EUV lithography,” it claims. “Our new source will replace the current laser-produced plasma (LPP) source, which is nearing its physical limits.”

Transformational source
xLight suggests that its FEL light source would be able to produce four times more EUV power than current LPP systems, potentially improving productivity and yield in future semiconductor wafer fabrication facilities.

The approach could also be used to provide EUV light to as many as 20 of ASML’s wafer patterning systems from a single source, in contrast to the current generation of EUV lithography systems, which each require their own laser-driven source.

The other key advantage is that the FEL approach would be able to shift to even shorter wavelengths of light than the 13.5 nm photons produced by today’s LPP systems.

Nicholas Kelez, currently both CEO and CTO at xLight, was previously chief engineer for the Linac Coherent Light Source (LCLS), a three-mile-long x-ray free electron facility for ultrafast science at Stanford's SLAC National Lab.

He said: “xLight is on a mission to build a transformational new light source for semiconductor manufacturing that addresses the key challenges facing the industry today - cost, capabilities, and capacity. This round will equip the company with the capital needed to complete detailed design and kickstart construction of our full-scale prototype.

“Advanced semiconductor manufacturing is approaching a key inflection point - together with our partners across the National Lab and semiconductor ecosystem, and with the support of our investors, we will commercialize free electron lasers and help reclaim American leadership in semiconductor manufacturing.”

ASML connection
FELs use electrons initially produced by a particle accelerator, which are then passed through magnetic “undulators” to generate high-intensity beams of coherent light.

“Our system’s programmable light characteristics will enable the shorter wavelengths of light, which will enable the extension of Moore’s law for decades,” claims xLight, adding that it has already established a working relationship with “technical leaders” at ASML.

That connection may be thanks to the presence of former Intel CEO Pat Gelsinger, who is now both executive chairman of the xLight board and a general partner at venture firm Playground Global, which led the series B investment and has also invested in co-packaged optics developer Ayar Labs.

“xLight represents a once-in-a-generation opportunity to restore American leadership in one of the most critical technologies underpinning the semiconductor industry,” said Gelsinger in a statement announcing the funding.

“By delivering an energy‑efficient EUV laser with tenfold improvements over existing technologies, xLight has the potential to drive the next era of Moore’s law - keeping chip scaling alive, accelerating fab productivity, and anchoring this foundational capability in the US supply chain.”

While the current EUV source technology is owned by ASML, it was originally developed in the US by the company Cymer, which is based near San Diego and originally specialized in excimer lasers for lithography before advancing EUV sources. It was acquired by ASML in 2013, for just under €2 billion.

Source: optics.org

Gerelateerde aanbevelingen
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    Bekijk vertaling
  • Unsupervised physical neural network empowers stacked imaging denoising algorithm

    In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engin...

    03-25
    Bekijk vertaling
  • E&R Engineering launches a mold cutting solution at Semicon SEA 2024

    Advanced laser and plasma solution provider E&R Engineering Corp. has confirmed that they will participate in the Semiconductor SEA 2024 event held in Kuala Lumpur, Malaysia. With 30 years of focus in the semiconductor industry, E&R has developed a wide range of plasma and laser technologies. At Semicon SEA 2024, they will showcase their latest solutions, including:Plasma Cutting - Small M...

    2024-05-20
    Bekijk vertaling
  • The company has made key breakthroughs in the development of laser micromachining systems

    3D-Micromac AG, a provider of laser micromachining systems, has announced new advances in laser micromachining solutions for magnetic sensors, micro-leds, manufactured power devices and advanced packaging of semiconductors.Since the first working laser came out more than 60 years ago, lasers have been widely used in the industrial market. Uwe Wagner, CEO of 3D-Mircomac, said: "In the semic...

    2023-08-04
    Bekijk vertaling
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    Bekijk vertaling