Nederlands

New Method - Observing how materials emit polarized light

59
2025-07-04 10:46:38
Bekijk vertaling

Many materials emit light in ways that encode information in its polarization. According to researchers at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, polarization is key for future technologies, from quantum computers to secure communication and holographic displays.
Among such phenomena is a form known as circularly polarized luminescence (CPL), a special type of light emission produced by chiral materials, in which light waves spiral either left or right as they travel.

 



Standard CPL techniques are often slow, narrowly focused, or unable to pick up faint signals, says EPFL, especially when studying advanced materials with fleeting or subtle polarization effects. These limitations have slowed the quest to fully understand how chiral materials interact with light.

Now, a team led by Professor Sascha Feldmann at EPFL’s Laboratory for Energy Materials has developed a high-sensitivity, broadband, time-resolved spectroscopy technique that captures the complete set of polarization states (the so-called "Stokes vector"). The work, including shared blueprints, is described in Nature.

Wide window

The new technique does this across a wide spectral window (400–900 nm), and at time intervals ranging from just nanoseconds up to several milliseconds, all with a noise floor as low as one ten-thousandth the intensity of the polarized light being emitted by a material. The new technique also captures linear and circular polarization signals at the same time, which helps identify and correct for polarization artifacts that often disrupt other methods.

The EPFL team says it designed the instrument “with straightforward, off-the-shelf components, making it widely adoptable.” They are sharing the full optical schematics and a compendium of “non-obvious” error sources to open the field up for others.
They used an electronically-gated camera and polarization optics to record the full Stokes vector in real time, tracking changes in light emission from different types of molecules that feature both strong and weak polarized luminescence. By recording the complete polarization fingerprint, the new set up can uncover details that other approaches miss, says EPFL.

 



The new approach successfully captured polarization changes in materials that had never been tracked in such detail before. It reproduced benchmark results for well-studied molecules, and it revealed previously unseen dynamics in organic emitters and complex systems where light emission happens on both fast and slow timescales.

With its combination of high sensitivity, wide spectral coverage, and nanosecond time resolution, the technique is said to open an unprecedented window onto the realm of excited-state polarization dynamics and symmetry-breaking. The team has also made their blueprints and automation algorithms public in an effort to democratize the field and help speed up discoveries worldwide.

Source: optics.org

Gerelateerde aanbevelingen
  • New laser technology can achieve more efficient facial recognition

    Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry P...

    2024-06-24
    Bekijk vertaling
  • Renishao provides customized laser ruler solutions for ASML

    Renishao collaborated with ASML to meet a range of strict manufacturing and performance requirements and developed a differential interferometer system for providing direct position feedback in metrology applications. Customized encoder solutions can achieve step wise improvements in speed and throughput.Modern semiconductor technology relies on precise control of various processes used in integra...

    2023-12-14
    Bekijk vertaling
  • New type of femtosecond laser: used for broadband terahertz generation and nonlinear wafer detection

    Recently, HüBNER Photonics, the leading manufacturer of high-performance lasers, has launched the latest member of the VALO femtosecond series - VALO Tidal. This laser not only represents a major leap in the fields of imaging, detection, and analysis, but also demonstrates the infinite possibilities of laser technology with its outstanding performance.The VALO Tidal femtosecond laser typically sho...

    2024-06-26
    Bekijk vertaling
  • The team of researcher Wei Chaoyang of Shanghai Optical Machinery Institute has realized the manufacture of fused quartz components with high resistance to UV laser damage

    Recently, a team led by researcher Zhaoyang Wei of the Precision Optics Manufacturing and Testing Center of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has realized the manufacture of fused quartz components with high resistance to UV laser damage based on the defect characterization and removal process of CO2 laser. The research is published in Light: Advance...

    2023-09-11
    Bekijk vertaling
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    Bekijk vertaling