Nederlands

Research on High Strength and High Toughness TC11 Titanium Alloy with Multi Laser Coaxial Wire Feeding and Directed Energy Deposition

1386
2025-05-14 11:54:39
Bekijk vertaling

Researchers from Huazhong University of Science and Technology, AVIC Xi'an Aircraft Design and Research Institute, AVIC Xi'an Aircraft Industry Group Co., Ltd., Shanghai Aerospace Equipment Manufacturing General Factory Co., Ltd., State Key Laboratory of Aircraft Control Integration Technology, Beijing Xinghang Electromechanical Equipment Co., Ltd. and Nanjing Yingigma Automation Co., Ltd. reported on the research progress of high-strength and high toughness TC11 titanium alloy deposited by multi laser beam coaxial wire feeding directional energy, and the related research was published in Next under the title of "Multi laser beams directed energy disposition of a high strength and high strength TC11 titanium alloy with coaxial wire feeding". Materials.


Article focus:
Developed a new type of multi laser beam coaxial wire feeding processing head
Optimizing process parameters to achieve good formability of TC11 alloy
Revealed the mechanism of thermal gradient and heterogeneous nucleation


The wire feeding laser directed energy deposition (WLDED) additive manufacturing technology uses metal wire as raw material, which has the advantages of high material utilization and low pollution, and is suitable for efficient processing of large components. However, the traditional side axis wire feeding method has problems such as insufficient laser wire coupling and limited flexibility of the processing head, making it difficult to meet the manufacturing needs of complex parts. This study designed a multi laser beam coaxial wire feeding device for the preparation and analysis of high-strength and high toughness TC11 titanium alloy, a commonly used material for key load-bearing components in aviation. By optimizing parameters such as wire feeding speed (500 mm/min) and scanning speed (4 mm/s), the formability has been significantly improved. Research has shown that the unique thermal gradient (G) and solidification rate (R) characteristics of coaxial WLDED, as well as the laser wire coupling position, can significantly affect the microstructure evolution and typical directional mechanical properties in different regions; The synergistic effect of lower thermal gradient and heterogeneous nucleation brought by coaxial ribbon feeding plays a decisive role in refining the microstructure of materials. This elucidates the microstructural evolution mechanism and tensile performance improvement mechanism of multi laser beam WLDED process for coaxial machining heads.

Keywords: additive manufacturing; Microstructure; Mechanical properties; Laser directed energy deposition; tc11 alloy

 


Figure 1. Coaxial WLDED method: (a) Design of six laser beam coaxial processing head; (b) Schematic diagram of sedimentation process; (c) Physical processing head

Figure 2. Single channel deposition morphology with wire feeding speed of 200-400 mm/min and scanning speed of 1-4 mm/s

Figure 3. Study on the Characteristics of Single Channel Sedimentary Sections: (a) Definition of Geometric Features; (b) Surface morphology under different parameters; (c) Sectional morphology under different parameters

Figure 4. Distribution of geometric features of the melt path under different parameters (the red area is the key influencing factor): (a) width/height/melt depth; (b) Dilution rate; (c) Aspect ratio; (d) Contact angle

Figure 5. Multi layer sedimentation cross-section (parameters: (a) wire feeding 400 mm/min scanning 3 mm/s, (b) 500 mm/min scanning 4 mm/s, (c) 600 mm/min scanning 5 mm/s); (d) Effective sedimentary area; (e-g) Microhardness distribution of the corresponding sample (yellow for sedimentary layer, gray for matrix)

Figure 6. Block specimen: (a) Macroscopic morphology; (b) Grain size evolution

Figure 7. Sedimentary TC11 block: (a) IPF diagram; (b) Tensile performance and fracture morphology; (c-d) Polar diagram

This study used a novel coaxial WLDED process to prepare a widely used high-strength and high toughness TC11 titanium alloy. Through systematic research on deposition formability, microstructure, and mechanical properties, grain size control and promotion of columnar equiaxed crystal transformation (CET) were successfully achieved. The main conclusions are as follows:

(1) We have developed a multi laser beam coaxial wire feeding processing head, which can achieve uniform heating of wire and molten pool. By analyzing the effects of scanning speed, wire feeding speed, and peak power on forming characteristics such as dilution ratio, aspect ratio, and contact angle, a fitting calculation formula was established to determine the optimized process parameter window.

(2) Further optimize multi-layer printing parameters based on hardness changes and prepare bulk samples. The microstructure and grain size evolution in different regions are highly correlated with the WLDED process, which is determined by the R/G values unique to coaxial processes and the laser wire coupling position. Its typical mechanical properties are superior to traditional additive manufacturing technology.

(3) The current research focuses on single channel/multi-layer/block deposition under limited conditions. Subsequent studies should investigate the effects of heat treatment regimes and multi phase transformations on tissue properties to further enhance the engineering applicability of WLDED technology.

Source: Yangtze River Delta Laser Alliance

Gerelateerde aanbevelingen
  • Jena Helmholtz Institute Using Air Deflection Laser Beam

    A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.Technology and PrinciplesThis innovative technology utilizes so...

    2023-10-07
    Bekijk vertaling
  • New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

    Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full inte...

    2024-03-01
    Bekijk vertaling
  • Tescan expands semiconductor workflow using femtosecond laser technology

    Tescan releases its next-generation femtosecond laser platform, FemtoChisel, expanding its semiconductor product portfolio. This platform is committed to improving the speed, accuracy, and quality of sample preparation, and will officially debut at the ISTFA exhibition in 2025. FemtoChisel was developed specifically for semiconductor research and failure analysis environments where both throughp...

    11-20
    Bekijk vertaling
  • Due to breakthroughs in microchip photonics, microwave signals have now become very accurate

    Zhao Yun/Columbia Engineering Company provided an advanced schematic of a photonic integrated chip, which aims to convert high-frequency signals into low-frequency signals using all optical frequency division.Scientists have built a small all optical device with the lowest microwave noise ever recorded on integrated chips.In order to improve the performance of electronic devices used for global n...

    2024-04-01
    Bekijk vertaling
  • CU Boulder's liquid scanning technology can better observe brain activity

    CU Boulder published a study in Optical Letters demonstrating a new high-speed laser guidance method for imaging applications, using a fluid scanner built around an electrowetting prism to replace traditional mechanical components."Most laser scanners today use mechanical mirrors to steer beams of light," said Darwin Quiroz from CU Boulder."Our approach replaces that with a transmissive, non-mecha...

    10-20
    Bekijk vertaling