한국어

Photonic hydrogel of high solid cellulose with reconfigurability

548
2025-02-17 14:33:51
번역 보기

Recently, Qing Guangyan, a researcher team from the Research Group on Bioseparation and Interface Molecular Mechanism (1824 Group) of Biotechnology Research Department of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, designed and prepared a highly solid cellulose photonic hydrogel with reconfigurability and mechanical discoloration. This preparation method opens up a new way to manufacture solid photonic hydrogels, and its intelligent optical response characteristics are expected to expand the application of bionic photonic cellulose materials in medical, energy and industrial fields.

The structure of Bouligand, which mimics the natural world, exhibits excellent mechanical properties due to its interlayer coupling and stress transfer mechanism, inspiring the development of high-performance materials such as impact resistant bioplastics, ceramic protective clothing, and biomimetic alloy composites. Although significant progress has been made in engineering plasticity through molecular level design and multi-scale structural optimization of biomimetic Bouligand structures, most existing materials are composed of single scale brittle units, lacking graded active interfaces and autonomous response capabilities, resulting in limited ductility and functionality. Therefore, it is necessary to break through the existing design bottlenecks and develop a new Bouligand structural material system that simultaneously possesses multi-level active interfaces, dynamic response capabilities, and high toughness, in order to enhance and optimize the rigidity and ductility of the material. Building strategies that balance micro motion and structural robustness, fundamentally breaking the contradiction between brittleness and toughness, and overcoming key technical challenges that hinder the practical application of biomimetic materials, is expected to solve the above-mentioned problems.

 



In this work, the team provided a widely applicable solution for the Bouligand structure through self-assembly of cellulose nanocrystals (CNC). This strategy achieves precise control of the spatial arrangement of the network matrix through nanofiber sliding and hydrogen bonding reconstruction. This transition is driven by the hydrogen bond action activated by water molecules to form a solid photonic hydrogel. The obtained Bouligand structure hydrogel shows excellent mechanical properties. Compared with the initial hydrogel, its toughness value has increased by 5 times, reaching 155.5MJ/m&# 179;, Stretchability exceeds 950%. In addition, these photonic hydrogels exhibit dynamic color change ability, can switch between red and blue, and maintain stable electrical sensitivity during reversible stretching. The imaging interface of the photonic hydrogel is durable and can be used repeatedly. It only needs to soak in water for 5 minutes to restore its activity. This work has opened up a new path for the practical application of CNC, which is expected to be applied in fields such as sustainable bioplastics, flexible electronic substrates, and intelligent photonic devices.

In recent years, the team led by Qing Guangyan has made a series of progress in the chiral functionalization research of nanocellulose. In the early stage, they have developed multi-mode and convertible chiral optical anti-counterfeiting films (Adv. Funct. Mater., 2022), flexible sweat sensors based on photonic cellulose nanocrystals (Small, 2023), left-handed circularly polarized luminescent cellulose films (Adv. Mater., 2024), and synergistic color changing and conductive cellulose nanocrystal photonic patches (Mater. Horizon., 2024).

The related research findings, titled "Highly robust cellulose photonic hydrogels with reconfigurability and mechanochromism," were recently published in Materials Today. The first author of this work is Li Qiongya, a doctoral student from the 1824 group of the institute.

Source: opticsky

관련 추천
  • Breakthrough in optical quantum simulation using long-lived polariton droplets

    Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and rec...

    2024-03-27
    번역 보기
  • GeoCue introduces three new TrueView 3D imaging systems

    Earlier this month, GeoCue, a liDAR mapping hardware and software provider, announced the launch of three new products for its TrueView 3D imaging system. These new systems combine laser scanning and high-resolution imaging, including the TV625, TV680 and TV680LR. All three systems are NDAA-compliant.All three systems are designed to be used in conjunction with drones, and the company note...

    2023-08-04
    번역 보기
  • Export of Pentium Laser Automation Production Line to Japan

    Recently, several large trucks from the Wenzhou factory of Pentium Laser were lined up and ready to go. The high-power and high-speed laser cutting automation production line developed and produced by Pentium Laser has been strictly inspected and accepted by Japanese customers for 15 days and 24 hours of uninterrupted operation. Today, it was loaded and sent to Japan. This laser cutting automati...

    2024-12-06
    번역 보기
  • NLIGHT announces the launch of two new laser technologies at The Battery Show North America

    Recently, nLIGHT, a leading company in the fields of fiber optics and semiconductor lasers, announced the launch of two new laser technologies at The Battery Show North America: WELDForm and Automatic Parameter Adjustment (APT), aimed at meeting the dynamic needs of advanced battery manufacturing customers. In order to provide high-quality laser welding technology to the rapidly growing electric...

    2024-10-15
    번역 보기
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    번역 보기