한국어

The semiconductor laser market is expected to reach $5.3 billion by 2029

1034
2024-12-03 13:57:36
번역 보기

Nowadays, laser technology is widely used in various traditional and emerging fields, including optical communication, material processing, consumer equipment, automotive sensing and lighting, display technology, medical applications for treatment and diagnosis, as well as aerospace and defense.

Especially in the semiconductor laser market, it is expected to grow from $3.1 billion in 2023 to $5.2 billion in 2029, with a compound annual growth rate (CAGR) of 9% during this period. This growth will be driven by rapid technological advancements, increasing demand from multiple industries, and the push to achieve higher performance at lower costs. The main trends shaping the semiconductor laser market include the expansion of laser applications, the shift towards compactness, energy efficiency, and solutions, as well as the integration of various technology platforms such as SOI, SiN, InP, and TFLN. At the same time, geopolitical factors and supply chain challenges are prompting manufacturers to adopt more flexible production strategies. Overall, driven by innovation in both mature and emerging markets, the semiconductor laser industry is expected to achieve significant growth.

 


The semiconductor (SC) laser industry constitutes the core of the photonic ecosystem. Although SC lasers have been widely adopted in communication and sensing applications, this photon technology is a challenging market for newcomers. SC laser manufacturers operate at different integration levels based on their knowledge and foundry capabilities, and must strategically choose segmented markets or applications based on their internal capabilities. The wide range of applications requires unique laser system specifications, which can affect the design of SC laser chips. In addition, there is fierce competition among direct diodes, fiber lasers, DPSSL, OPSL, and gas lasers in terms of technological level.

Therefore, the SC laser industry is highly dispersed and diversified, and each application requires a specific supply/value chain. Manufacturers must adopt different strategies to enter different segmented markets. The leading SC laser manufacturer implements vertical integration, managing all steps from epitaxial and front-end (FEOL) processing to back-end (BEOL) and module assembly or laser subsystem construction. Some even specialize in producing laser machinery for material processing applications.

VCSEL technology is rapidly developing, and companies such as Lumentum, Coherent, and Trumpf have improved power density through NIR multi junction design, increasing from 5-6 junctions to 8 by 2024. These lasers were initially used in automobiles and are now expanding into consumer and industrial markets. Despite technological challenges, efforts to extend GaAs VCSEL from NIR to SWIR (including wafer fusion technology) still show promise, while GaN based visible light VCSEL is still in the research and development stage due to performance limitations and low market demand. In the field of optical communication, VCSEL is developing from 100G/lane to 200G/lane, and the grand goal for the future is 400G/lane.

Similarly, EEL technologies such as DML, EML, and CW-DFB are expected to achieve 200G/lane by the end of 2024. FP and QCL lasers continue to dominate the industrial, medical, and automotive fields, with the goal of achieving a power output of 20W by 2026 to help reduce system costs. In the field of automotive LiDAR, EEL faces competition from advanced VCSEL and emerging FMCW LiDAR technologies. Driven by artificial intelligence driven optical communication, it is expected that by 2029, the demand for photonics integrated circuits (PIC) from SC lasers will reach a market share of 5%. However, due to continuous advancements in power, efficiency, and wavelength diversity, discrete lasers still remain competitive.

Source: Yangtze River Delta Laser Alliance

관련 추천
  • Fraunhofer ILT has developed a process for forming hard material components using USP laser technology

    Tools made of hard materials are very wear-resistant, but the tools used to produce these tools are prone to wear and tear. Laser tools are the solution. Researchers at the Fraunhofer Institute for Laser Technology (ILT) have developed a process chain that can use ultra short pulse (USP) lasers to shape and polish hard material components without the need to replace clamping devices.Drills, millin...

    10-17
    번역 보기
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    번역 보기
  • Magdalena Ridge expands the capacity of optical interferometers

    The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple...

    2024-01-05
    번역 보기
  • ARRI manufactures new Orbiter beams to achieve optimal brightness

    ARRI has launched Orbiter Beam, further expanding the range of accessories for LED spotlights. This is the first beam optical device in the ARRI LED lighting product portfolio. A new optical concept has been developed specifically for this reflector. The beam intensity level of Orbiter Beam has an output comparable to the ARRI Daylight M series M18 at a more compact beam angle.These high-intensity...

    2024-02-15
    번역 보기
  • Germany Developed Short Wave Green Laser Underwater Cutting Technology

    With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plant...

    2023-09-18
    번역 보기