한국어

Laser beam combined with metal foam to produce the brightest X-ray

595
2025-01-18 11:00:26
번역 보기

According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dense matter (including plasma generated during inertial confinement fusion). The relevant research paper was published in the latest issue of Physical Review E.

The laser generated by NIF overlaps the millimeter level cylindrical silver foam target to create high-energy X-ray. Image source: Lawrence Livermore National Laboratory

The team explained the process of creating this type of X-ray: a high-power laser beam collides with silver atoms, exciting plasma and generating X-rays. The higher the atomic number of a metal atom, the higher the X-ray energy it produces.

To produce X-rays with energies higher than 20000 electron volts, the team chose metallic silver in the experiment. Since the foam structure of metal is crucial for creating high-energy X-ray, they used molds and silver nanowires to create a cylindrical target with a diameter of 4mm and a height of 4mm.

The team first freezes the nanowires suspended in the mold solution, then uses supercritical drying technology to remove the solution, and finally leaves low-density porous silver metal foam. The density of this silver foam structure is only one thousandth of that of solid silver.
This foam structure has many advantages: the laser emitted by NIF can heat a larger volume of foam material, and the heat transmission speed is far faster than that in solids. The entire silver foam cylinder was heated by a laser beam in about 1.5 billionths of a second, thus producing the brightest X-ray so far.

In addition to creating the X-ray source, the team also made in-depth exploration on a variety of different foam materials to determine which foam can provide the maximum energy output. Meanwhile, they also employed a novel data analysis technique to understand the physical properties of the generated plasma.

Source: Yangtze River Delta Laser Alliance

관련 추천
  • Monport Laser's grand anniversary event ignited a boom in laser engraving industry

    Monport Laser, a leading manufacturer of laser engraving machines, is pleased to announce an exciting anniversary on its website. The event will mark the anniversary of Monport Laser and offer customers a range of exclusive offers and promotions. The event will highlight Monport Laser's commitment to innovation, customer satisfaction and the magic of laser engraving.The Monport Laser Anniversary...

    2023-08-04
    번역 보기
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    번역 보기
  • Ultra capillary properties of composite liquid absorbing cores manufactured by laser powder bed melting additive manufacturing

    Researchers from Sichuan University, the Key Laboratory of Advanced Special Materials and Preparation Processing Technology of the Ministry of Education, and the Nuclear Additive Manufacturing Laboratory of China Nuclear Power Research and Design Institute reported on the study of the ultra capillary performance of laser powder bed melting additive manufacturing composite structure liquid absorbin...

    03-20
    번역 보기
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    번역 보기
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    번역 보기