한국어

The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

478
2023-10-28 10:16:56
번역 보기

The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.

Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been a research focus of international scientific and technological attention.

On October 26th, the first Ultrafast Laser Application Development Conference hosted by the China Optical Engineering Society opened at the Songshan Lake Materials Laboratory in Dongguan. Nearly 500 renowned academicians, experts, and enterprise representatives from the laser industry have jointly discussed the development trends, technological applications, and cutting-edge developments of ultrafast laser technology through technical exchanges, industry forums, demand docking, project roadshows, and other forms, promoting the high-quality development of the ultrafast laser industry.

"This year's Nobel Prize in Physics was awarded to scientists in the field of attosecond laser, which fully reflects the important position in the field of ultrafast laser science and technology." Wang Lijun, chairman of the conference and academician of the CAS Member, said that ultrafast lasers represented by picosecond and attosecond have broad application prospects in new generation information technology, additive manufacturing, aerospace, new energy vehicles, biomedicine and other fields. In this context, the first Ultrafast Laser Application Development Conference emerged.

At the opening ceremony, Wang Weihua, an academician of the CAS Member and director of the Songshan Lake Materials Laboratory, revealed that the Songshan Lake Materials Laboratory would jointly build the first advanced attosecond laser facility in China with the Institute of Physics of the Chinese Academy of Sciences and the Xi'an Institute of Optics and Mechanics, of which eight beam line construction tasks would be landed in Dongguan.

At present, the Songshan Lake Materials Laboratory has established the Ace Science Center, introducing the Chief Scientist Wei Zhiyi, and gathering a large number of outstanding researchers and engineers from both domestic and international sources. It is hoped that in the future, the laboratory can build a research center for ultrafast matter science, relying on large facilities such as China's scattered neutron source in the surrounding area to achieve world-class results in energy materials, information materials, and other fields.

Within two days, the conference will focus on two major topics: ultrafast laser technology and industry, and hold over 20 special seminars or reports to jointly explore forward-looking ideas and innovative achievements in the new situation, as well as how capital, technology, and market can promote the development of the laser industry and other hot topics.

At the same time, the conference will take multiple measures to jointly assist in the transformation and implementation of achievements, inviting leading enterprises at all levels of the industrial chain, key research teams, universities and research institutes, etc. to showcase outstanding scientific and technological achievements and application cases. Multiple technical exchanges, project roadshows, talent recruitment, docking negotiations, and other activities will also be held on-site.

Source: Southern Daily

관련 추천
  • Photon automation expands through new laser application laboratories

    Photon Automation, Inc., headquartered in Greenfield, Indiana, has been committed to providing automated laser technology solutions since 2000. The company is pleased to announce the opening of its state-of-the-art laser application laboratory in Farmington Hills, Michigan. This 7400 square foot facility will be led by renowned laser physicist Dr. Najah George, who has over 35 years of extensive e...

    2023-09-01
    번역 보기
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    번역 보기
  • First 6-inch thin film lithium niobate photonic chip wafer pilot production line

    Recently, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute (CHIPX) located in Binhu District, Wuxi City, has achieved a breakthrough - the first 6-inch thin film lithium niobate photon chip wafer has been produced on China's first photon chip pilot line, and high-performance thin film lithium niobate modulator chips with ultra-low loss and ultra-high bandwidth have been mass-produ...

    06-11
    번역 보기
  • Dazu Photonics launched the third generation of high power fiber laser successfully increased the product power to 50kW

    In recent years, with the vigorous development of new energy and other industries, the improvement of environmental awareness and the increasing demand for new applications, the demand for fiber lasers in intelligent manufacturing is increasing, and the demand for power is also increasing, and high-power fiber lasers can significantly improve production efficiency and are widely sought after by th...

    2023-09-02
    번역 보기
  • Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

    In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.Laser devices operating...

    02-21
    번역 보기