한국어

An innovative technology that can make light "bend"

265
2024-11-11 13:51:46
번역 보기

A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published in the latest issue of the journal Nature Physics under the title "Energy Transport in Diffuse Waveguides".

The research team pointed out that clouds, snow, and other white materials have similar effects on light: when photons shine on the surface of these objects, they are almost unable to penetrate and scatter in all directions. For example, when sunlight shines on cumulonimbus clouds, the light will reflect from the top of the cloud, making this part of the cloud appear bright and white; However, there is very little light reaching the bottom of the cloud, resulting in a dark color at the bottom of the cloud.

In order to simulate this natural phenomenon, the research team used opaque white materials and 3D printing technology to manufacture a new type of material, and constructed some small tunnels inside the material. When light shines on this material, it enters these tunnels and scatters. However, unlike scattering in nature, photons do not randomly scatter in all directions, but are guided back into the tunnel by opaque materials. Through this method, they successfully created a series of materials that can guide light in an orderly manner.

Compared with traditional solid materials, this new material increases the transmittance of light by more than two orders of magnitude and enables light to propagate in curved paths. Although this material cannot achieve long-distance transmission like optical fibers, its method is simple and cost-effective, with significant advantages.

The research team emphasizes that this technique of bending light can utilize existing semi transparent structures, such as tendons and fluids within the spine, to open up new avenues for medical imaging. The new technology can also be used to guide heat and neutrons, suitable for multiple engineering fields such as cooling systems and nuclear reactors.

Source: Yangtze River Delta Laser Alliance

관련 추천
  • $75 million, this laser equipment manufacturer will be acquired

    Rocket Lab USA continues its path of vertical integration and has signed an exclusive but non binding agreement with MynaricAG, a German laser communication terminal (LCT) supplier and Rocket Lab supplier, to acquire the company for $75 million in cash or stock.If Mynaric achieves its revenue target, it will pay an additional revenue of up to $75 million. This acquisition depends on whether Myna...

    03-25
    번역 보기
  • Observation of nanoscale behavior of light driven polymers using combination microscopy technology

    Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical ...

    2024-03-12
    번역 보기
  • Filatek: Leading the Development of Laser, Shining "Additive Prince"

    In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared a...

    2024-04-12
    번역 보기
  • Scientists have developed a solar cell that can bend and soak in water

    Researchers and their partners at the RIEKN Creative Physical Science Research Center have created a flexible and waterproof organic photovoltaic film. This innovative thin film can integrate solar cells into clothing, maintaining functionality even in rainwater or washing cycles.One of the potential uses of organic photovoltaic technology is to manufacture wearable electronic devices that can be ...

    2024-05-08
    번역 보기
  • The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale las...

    2023-10-12
    번역 보기