한국어

Mitsubishi Electric has launched a light source module for high-capacity laser optical communication in outer space

167
2023-08-24 11:15:32
번역 보기

On August 22nd, Mitsubishi Electric Corporation, a multinational electronics and electrical equipment manufacturing company, announced that it had successfully demonstrated laser optical frequency control using a new light source module, which is a key component of a high-capacity laser optical communication network to be deployed in outer space.

It is reported that this module can generate 1.5 μ The m-wavelength signal was installed on the OPTIMAL-1 nanosatellite jointly developed by industry, academia, and research, and was successfully launched from the International Space Station (ISS) on January 6 this year.

Compared to using traditional large satellites, using nanosatellites enables this demonstration to be carried out at a faster speed and at a lower cost.

Mitsubishi Electric has been developing space based optical technology, which has the potential to increase data capacity (ten times or more), communication speed, and distance compared to systems using radio waves.

Satellite images are increasingly being used to assess the situation in post disaster areas and the condition of remote forest resources. The existing radio wave satellite communication systems are limited in terms of capacity, speed, and distance, so it is necessary to provide new optical systems that improve communication capabilities for faster and higher resolution evaluations from space.

Advanced systems using laser signals are expected to be increasingly adopted, not only because of their superior communication capabilities, but also because they use shorter wavelengths than radio waves, allowing for the use of relatively small and easy to install ground antennas.

Laser communication between satellites requires correction for the "Doppler effect" - the Doppler effect, which is a change in laser optical frequency caused by differences in relative motion speeds between satellites. The new light source module is deployed as the world's first to utilize a wavelength of 1.5 μ The laser frequency can be adjusted to 60 GHz in space, which is enough for "Doppler effect" compensation.

The nanosatellites developed through industry university research cooperation projects require only about one-third of the time required for demonstration in outer space compared to large-scale satellite demonstrations, and the development cost is only one percent of that of large-scale satellite demonstrations.

Takayoshi Fukuyo, CEO of ArkEdge Space Inc., said, "In recent years, the development momentum of nanosatellites has been continuously increasing. Nanosatellites weighing only a few kilograms can be developed and launched at low cost, so they are expected to be used for new applications, such as using a large number of satellites to observe the Earth extensively. The successful demonstration of light source modules on OPTIMAL-1 is expected to drive the deployment of nanosatellites.

Professor Yoshihide Aoyanagi from the University of Fukui said, "The conditions in outer space, including radiation, vacuum, and temperature, create harsh environments for equipment, so demonstrating the ability to operate in space is crucial for the development of satellites. I hope that the successful demonstration of OPTIMAL-1 will promote further progress in the industrial use of nanosatellites.

Future development

Mitsubishi Electric will propose demonstration technologies for large-scale space development projects. In addition, the company will promote nanosatellites as an important demonstration platform for space-related research and development through industry university research cooperation. Mitsubishi Electric will continue to pursue technological development aimed at achieving space-based laser optical communication as soon as possible.

Source: OFweek

관련 추천
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    번역 보기
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    번역 보기
  • German research institute develops a new nanosecond laser process

    Recently, the Fraunhofer Institute (HHI) has developed a technology for processing aluminum alloy materials using reactive gas assisted nanosecond lasers, which can be used to produce electronic box samples for spacecraft manufacturing. This development project is part of the NanoBLAST project, in close collaboration with thermal engineering company Azimut Space GmbH, aimed at manufacturing surfac...

    2024-09-10
    번역 보기
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    번역 보기
  • Alcon acquires ophthalmic laser equipment company for $466 million

    On July 3rd local time, Swiss ophthalmic care giant Alcon announced the acquisition of Israeli medical technology company Belkin Vision and its laser equipment assets for treating glaucoma.The transaction includes a prepayment of $81 million, of which approximately $65 million is in cash. In addition, if Alcon can establish this technology as the preferred first-line treatment option for clinical ...

    2024-07-09
    번역 보기