한국어

Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

873
2024-09-27 15:23:50
번역 보기

Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of the paper is Zhang Congfu, a 2021 doctoral student.

The mid infrared band (3-5 μ m) plays a crucial role as an atmospheric window in many fields such as biomedical and environmental monitoring. Traditional mid infrared detection and imaging technology faces many problems such as low detector sensitivity and large size. Nonlinear frequency upconversion technology converts mid infrared signal light into near-infrared or visible light bands, which can achieve high-sensitivity detection using silicon-based detectors with small size and high quantum efficiency, providing a new technological approach for mid infrared detection and imaging. Numerous studies have shown that metasurfaces can enhance the interaction between light and matter in sub wavelength nanostructures, breaking through the phase matching limitations of traditional nonlinear optical parametric processes. However, existing metasurfaces typically rely on narrowband high-quality factor resonances to achieve local field enhancement, which poses significant challenges for the further development of ultra wideband nonlinear frequency conversion technology.

Figure (a) Metasurface structural unit; (b) Dielectric constant curve; (c, d) absorption spectra; (e, f) Localized fields at different wavelengths


Figure (a) 3160 nm; (b) 916 nm;  (c) 710 nm. Distribution of electric field Ez component; (d, e) Upconverted light intensity generated by different signal light and pump light; (f) Upconversion light intensity generated under different signal light intensities

In response to the above issues, the research group proposed a method of using gap plasma mode to achieve mode field overlap and broadband enhancement. By designing hyperbolic metamaterials (HMMs) composed of Au ZnO multilayer structures with triangular pyramid shapes, the ultra wideband nonlinear frequency upconversion technology was theoretically verified for the first time in the 3-5 μ m mid infrared band. The gap plasma mode in HMMs multilayer structure excites high-order narrowband resonance at near-infrared pump light wavelength, while the slow light effect generated by dipole and hyperbolic dispersion achieves ultra wideband near-field enhancement at mid infrared wavelength. The symmetry breaking of the triangular structure localizes these resonance modes at the tip of the structure, which not only enhances the localized field in the dielectric material, but also achieves mode field overlap at different signal and pump wavelengths, significantly enhancing the nonlinear frequency conversion process. Thanks to the slow light effect, manipulating the geometry and materials of the basic units of metasurfaces can adjust the above modes, thereby achieving frequency conversion processes at specific wavelengths. The research results provide new ideas for the development of nonlinear frequency conversion technology based on metasurfaces, and provide technical support for the research of new mid infrared optoelectronic detection systems. It has important application value in the fields of mid infrared detection, imaging, sensing, and communication.

Source: Xi'an Institute of Optics and Fine Mechanics

관련 추천
  • Medical implant manufacturers have announced the launch of ultra-short pulse lasers for cutting applications

    Norman Noble, the world's leading contract manufacturer of next-generation medical implants, today announced the launch of the Noble STEALTH HP, an ultrashort pulse laser for the fabrication of innovative medical devices and implants.It is reported that the laser is mainly equipped with a high-power laser cutting system, which can achieve high-quality cutting results without heat affected zone (HA...

    2023-09-12
    번역 보기
  • The Role of Active Tunable Laser in GeSn Nanomechanical Oscillator in Nat Nanotechnology

    It is reported that researchers from Nanyang Technological University in Singapore, Federal Institute of Technology Lausanne in Switzerland, Physics Laboratory of Higher Normal University in Paris, National Center for Scientific Research in France, Sorbonne University, City University of Paris, University of Leeds in the UK, and Korean Academy of Science and Technology (KAIST) have reported on the...

    2024-05-14
    번역 보기
  • A review of research on residual stresses in carbon steel welding

    Researchers from the University of Witwatersrand in South Africa have reported a review of research on residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and advances in advanced post weld heat treatment technologies. The relevant paper titled "A comprehensive review of residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and ...

    04-12
    번역 보기
  • The research team establishes synthetic dimensional dynamics to manipulate light

    In the field of physics, the synthetic dimension has become one of the forefront of active research, providing a way to explore phenomena in high-dimensional space, surpassing our traditional 3D geometric space. This concept has attracted great attention, especially in the field of topological photonics, as it has the potential to unlock rich physics that traditional dimensions cannot reach.Resear...

    2024-03-20
    번역 보기
  • Comparison of Blue and Infrared Wavelength in Pure Nickel Laser Deep Fusion Welding Process

    It is reported that researchers from BIAS Bremer Institution f ü r angewandte Strahltechnik GmbH in Germany have reported a comparative study of laser deep penetration welding processes for pure nickel using blue and infrared light wavelengths. The related research was published in Welding in the World under the title "Process comparison of laser deep penetration welding in pure nickel using blue ...

    2024-08-13
    번역 보기