한국어

The semiconductor Institute has made progress in the study of high power and low noise quantum dot DFB single-mode lasers

734
2023-09-05 15:38:36
번역 보기

Recently, the team of Yang Tao-Yang Xiaoguang, a researcher at the Key Laboratory of Materials Science of the Institute of Semiconductors of the Chinese Academy of Sciences, and Lu Dan, a researcher, together with Ji Chen, a professor at the Zhijiang Laboratory of Zhejiang University, have made important progress in the research of high-power, low-noise quantum dot DFB single-mode lasers.

Distributed feedback (DFB) lasers are compact and dynamic single-mode, and are the core light sources for applications such as high-speed optical communication, large-scale photon integration, liDAR and microwave photonics. 

In particular, the field of artificial intelligence represented by ChatGPT shows an explosion trend, which urgently needs optical computing chips with high computing power, high integration and low power consumption as physical support, and puts forward higher requirements for the temperature stability, high temperature operating characteristics, optical feedback stability, single mode quality, and volume cost of the core light source.

By using a high density, low defect laminated InAs/GaAs quantum dot structure as the active region and a low loss lateral coupling grating as an efficient mode selection structure, the team developed a high-performance O-band quantum dot DFB laser with high power, high stability, low noise and anti-feedback in a wide temperature region. In the range of 25-85 °C, the output power of the laser is greater than 100 mW, and the maximum edge mode rejection ratio is more than 62 dB. The lowest white noise level is only 515 Hz2 Hz-1, and the corresponding intrinsic line width is as low as 1.62 kHz. The minimum average RIN is only -166 dB/Hz (0.1-20 GHz). 

In addition, the anti-optical feedback threshold of the laser is as high as -8 dB, which meets the technical standards for stable operation without external optical isolators. The device has excellent comprehensive performance, low cost and small size, and has a large-scale application prospect in the fields of large-capacity optical communication, high-speed on-chip optical interconnection, high-precision detection, etc.

The relevant research results are as follows: High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers. Published in Laser & Photonics Reviews. The research work is supported by the National key research and development Plan and the National Natural Science Foundation.

Figure 1. Morphology and fluorescence characteristics of quantum dot materials, as well as device and grating structures

Figure 2. Output characteristics, spectral characteristics, optical frequency noise characteristics and spectral stability under external optical feedback of the device

Paper link: https://doi.org/10.1002/lpor.202200979

Source: Semiconductor Research Institute

관련 추천
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    번역 보기
  • NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

    Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and te...

    2023-10-13
    번역 보기
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    번역 보기
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    번역 보기
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the generation of third harmonic in laser air filamentation

    Recently, the team from the State Key Laboratory of Intense Field Laser Physics, Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences found that the third-order harmonics induced by air filamentation of high repetition rate femtosecond lasers have significant self jitter. To solve this bottleneck problem, a solution based on an external DC electric field was proposed, which sign...

    2024-10-10
    번역 보기