한국어

Laser blasting promises to solve global plastic problem

423
2024-07-16 14:30:55
번역 보기

Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.

This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.

This discovery has the potential to improve the way we handle plastics that are currently difficult to decompose. The relevant research results have been published in the journal Nature Communications.

By utilizing these unique reactions, we can explore new ways to convert environmental pollutants into valuable reusable chemicals, thereby promoting the development of a more sustainable and circular economy, "said Yuebing Zheng, a professor in the Walker Department of Mechanical Engineering at the Cockrell School of Engineering at the University of Texas at Austin and one of the project leaders." This discovery is of great significance for addressing environmental challenges and advancing the field of green chemistry.

Plastic pollution has become a global environmental crisis, with millions of tons of plastic waste accumulating in landfills and oceans every year. Traditional plastic degradation methods often have high energy consumption, are harmful to the environment, and have poor results. Researchers envision using this new discovery to develop efficient plastic recycling technologies to reduce pollution.

Researchers use low-power light to break the chemical bonds of plastics and create new chemical bonds, transforming the material into luminescent carbon dots. Due to the diverse capabilities of carbon based nanomaterials, there is a high demand for these carbon dots, which may be used as storage devices in the next generation of computer equipment.

Transforming plastics that can never be degraded into materials useful for many different industries is exciting, "said Jingang Li, a postdoctoral student at the University of California, Berkeley who started this research at the University of Texas at Austin.

The specific reaction he mentioned is called "C-H activation", which selectively breaks the carbon hydrogen bonds in organic molecules and converts them into new chemical bonds. In this study, two-dimensional materials catalyzed this reaction, turning hydrogen molecules into gas and allowing carbon molecules to combine with each other to form carbon dots for storing information.

Further research and development are needed to optimize this photo driven C-H activation process and scale it up for industrial applications. However, this study represents significant progress in finding sustainable solutions for plastic waste management.

The photo driven C-H activation process demonstrated in this study can be applied to many long-chain organic compounds, including polyethylene and surfactants commonly used in nanomaterial systems.

Other co authors come from the University of Texas at Austin, Northeastern University in Japan, University of California, Berkeley, Lawrence Berkeley National Laboratory, Baylor University, and Pennsylvania State University.

This work has received funding from the National Institutes of Health, National Science Foundation, Japan Association for the Advancement of Science, Hirose Foundation, and National Natural Science Foundation of China.

Source: OFweek

관련 추천
  • Panasonic Launches 3D Short Pulse Fiber Precision Laser Marking Machine LP-ZV

    Recently, Panasonic has launched the latest laser marking technology product - the LP-ZV series, which can provide high-precision and high-efficiency laser marking.Panasonic claims that the LP-ZV series has set a new standard that can bring excellent speed and accuracy in operation, suitable for various applications such as marking text, graphics, barcodes, and 2D code.The company stated that the ...

    2023-11-08
    번역 보기
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    번역 보기
  • Process practice of blue light semiconductor laser cladding copper on copper

    Laser Cladding, also known as laser cladding or laser cladding, is a method of adding cladding material to the surface of the substrate and using a high-energy density laser beam to melt it together with the thin layer on the surface of the substrate. It forms a metallurgical bonded additive cladding layer on the surface of the substrate, which can be used for surface strengthening and defect repa...

    2024-04-09
    번역 보기
  • Shanghai Optics and Machinery Institute has made new progress in evaluating the anti laser damage performance of thin film optical components using different laser damage testing protocols

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in evaluating the laser damage resistance and damage mechanism of 532nm thin film polarizers using different laser damage test protocols. The related achievements were published in Optical Materi...

    2024-04-25
    번역 보기
  • Expert discussion at IEC TC110 conference: Laser display is expected to surpass traditional display solutions

    Recently, the International Electrotechnical Commission Electronic Display Technology Committee (IEC TC110) International Standards Conference was held in Qingdao, attracting more than 120 experts, scholars, and technical representatives from around the world, including Japan, South Korea, and the United States. At the IEC TC110 conference, laser display technology has won wide recognition from in...

    02-25
    번역 보기