한국어

Research on LiDAR at the University of Electronic Science and Technology of China, published in Nature

200
2024-06-22 09:49:06
번역 보기

The team from the School of Information and Communication Engineering at the University of Electronic Science and Technology of China has proposed for the first time a laser radar instrument based on the dispersion Fourier transform method, forming a new demodulation mechanism. This instrument breaks through the cross limitations of measurement speed, accuracy, and distance, and has unique advantages in the discovery of low, slow, and small targets such as drones. The relevant paper was published in Nature Communications.


Lidar, as a powerful tool, can draw spatial information in real-time with extremely high accuracy and is widely used in industrial manufacturing, remote sensing, airborne and vehicular tasks. In the past two decades, the rapid development of optical frequency combs has improved measurement accuracy to the level of quantum noise limitation. The research at the University of Electronic Science and Technology of China uses the dispersion Fourier transform method to analyze the data information of the phase-locked vernier double soliton laser comb. Through online pulse stretching, it achieves full spectrum interferometric measurement based on traditional time interferometry or pulse reconstruction methods to identify pulse delay. This results in an absolute distance measurement accuracy of 2.8 nanometers and a measurement distance of 1.7 kilometers. In addition, this method has the unique ability to completely eliminate dead zones, which is particularly beneficial for small object detection.

Source: OFweek

관련 추천
  • Coherent Unifies Ultrafast Laser Business at the Glasgow Center of Excellence

    Recently, Coherent, an American laser system solution provider, announced that all of the company's ultra fast laser business, including the manufacturing of all picosecond and femtosecond lasers, will be unified in one place: the Ultra Fast Center of Excellence in Glasgow, Scotland.Previously, Coherent's Ultra Fast Center of Excellence located in Glasgow was already a state-of-the-art mass produc...

    2023-09-22
    번역 보기
  • Juguang Technology launches miniaturized high-power semiconductor laser stack GS09 and GA03

    In today's technology field, Juguang Technology released two highly anticipated high-power semiconductor lasers on December 13th: GS09 and GA03. These two products are leading the innovation wave in the laser industry with their miniaturized design, excellent thermal management capabilities, and extensive customization flexibility.GS09 revolutionizes chip spacing by compressing the width of the st...

    2023-12-15
    번역 보기
  • High Power Laser Assists Scientists in Discovering a New Stage of High Density and Ultra High Temperature Ice

    As is well known, the outer planets of our solar system, Uranus and Neptune, are gas giants rich in water. The extreme pressure on these planets is 2 million times that of the Earth's atmosphere. Their interiors are also as hot as the surface of the sun. Under these conditions, water exhibits a strange high-density ice phase.Researchers have recently observed one of the stages, called Ice XIX, whi...

    2023-10-11
    번역 보기
  • Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

    Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric ...

    2024-07-11
    번역 보기
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    번역 보기