한국어

RTX Raytheon Company will develop ultra wide bandgap semiconductors for ultraviolet lasers

399
2024-09-30 14:11:00
번역 보기

The UWBGS program will develop and optimize ultra wide bandgap materials and manufacturing processes for the next revolution in the semiconductor electronics field.

US military researchers need to develop new integrated circuit substrates, device layers, junctions, and low resistance electrical contacts for the new generation of ultra wide bandgap semiconductors. They found a solution from RTX company.

On September 13, 2024, personnel from the Defense Advanced Research Projects Agency (DARPA) located in Arlington, Virginia, announced a $5.3 million contract with the RTX Raytheon division in Arlington, Virginia, for the Ultra Wide Bandgap Semiconductor (UWBGS) project.

The UWBGS project will focus on developing and optimizing ultra wide bandgap materials and manufacturing processes to embrace the next revolution in the semiconductor electronics field. Ultra wide bandgap technology represents a new type of semiconductor that can be used for future RF and high-power electronics, deep ultraviolet electro-optic, quantum electronics, and system applications that must operate in harsh environments.

UWBGS will lay the foundation for producible and reliable high-performance ultra bandgap devices for various defense and commercial applications, such as high-power RF switches; High power density RF amplifier; High power RF protection device; High voltage switch; High temperature electronic devices; And deep ultraviolet lasers and light-emitting diodes.

This project will address some key technical challenges, such as achieving high-quality ultra wide bandgap materials, customizing the electrical properties of ultra wide bandgap materials, creating homogeneous and heterogeneous structures with abrupt junctions and low defect density, and ultra-low resistance electrical contacts. UWBGS will produce device testing structures to quantify improvements in these areas. To achieve the goal, the plan will fully utilize the latest developments in ultra wide bandgap materials.

Experts from the DARPA Microsystems Technology Office are focusing on two types of ultra wide bandgap devices: low defect density substrates with diameters greater than 100 millimeters; A device layer with high doping efficiency, mutated homojunctions and heterojunctions, low junction defect density, and ultra-low resistance electrical contacts.

DARPA researchers have stated that ultra wide bandgap materials such as aluminum nitride, cubic boron nitride, and diamond have the potential to revolutionize the application of semiconductor electronic devices, such as high-power RF switches and limiters, high-power density RF amplifiers for radar and communication systems, high-voltage switches for power electronics, high-temperature electronic devices and sensors for extreme environments, deep ultraviolet light emitting diodes (LEDs), and lasers.

However, the poor quality of ultra wide bandgap materials today limits their performance, and scientists must overcome multiple technical challenges to make this technology a success.

During the three-year UWBGS program, Raytheon engineers will focus on improving the material quality of device layers and junctions, as well as enhancing the electrical quality of metal contacts.

To this end, Raytheon Company will focus on three areas: large-area ultra wide bandgap substrates; Doping agents for ultra wide and wide forbidden homojunctions and heterojunctions; And a mixture of ultra-low resistance electrical contacts and ultra wide width forbidden materials.

Source: Yangtze River Delta Laser Alliance

관련 추천
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    번역 보기
  • Data from the 2023/2024 fiscal year of Tongkuai Group shows a decline in sales and order volume

    German high-tech company TRUMPF has released data for the 2023/24 fiscal year: sales decreased by 3.6% to 5.2 billion euros, and orders decreased by 10.4% to 4.6 billion euros. The global number of employees has increased by 650, with a total of over 19000 employees, and the number of employees in Germany has increased by nearly 400.As of June 30, 2024, at the end of the 2023/24 fiscal year, the s...

    2024-10-21
    번역 보기
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".Figure 1. Demonst...

    2024-10-26
    번역 보기
  • Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

    Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.Yingfeilang stated that its data ce...

    2024-03-18
    번역 보기
  • Ruifeng constant green laser: With dense and concentrated characteristics, it can accurately cut on PCBs and FPCs

    In the vigorous development of contemporary technology, green laser has become a shining star in the field of electronics. Not only because of its excellent performance, but also because it brings infinite imagination and creative inspiration to creators. The use of green laser for PCB (Printed Circuit Board) and FPC (Flexible Printed Circuit Board) shape cutting has opened up a new artistic journ...

    2023-09-19
    번역 보기