한국어

Scientists have successfully miniaturized erbium-based erbium lasers on silicon nitride photonic chips

204
2024-06-13 15:59:01
번역 보기

Scientists from the Federal Institute of Technology in Lausanne (EPFL) have successfully miniaturized a powerful erbium-based erbium laser on silicon nitride photonic chips. Due to the large volume and difficulty in shrinking of typical erbium-based fiber lasers, this breakthrough is expected to make significant progress in optical communication and sensing technology.

Since the 1960s, lasers have completely changed the world and are now indispensable in modern applications, from cutting-edge surgery and precision manufacturing to fiber optic data transmission.

It can also scale down optical technologies in various other applications, such as LiDAR, microwave photonics, optical frequency synthesis, and free space communication.

"The application fields of this new type of erbium-doped integrated laser are almost unlimited."
EDWATEC SA, a subsidiary of the laboratory, is an integrated device manufacturer that now offers devices based on rare earth ion doped photonic integrated circuits, including high-performance amplifiers and lasers.
Filters allow for dynamic tuning of laser wavelengths over a wide range, making them versatile and suitable for various applications. This design supports stable single-mode lasers, with an inherent narrow linewidth of only 50 Hz.

It also allows for significant side mode suppression - the laser can emit light at a single, consistent frequency while minimizing the intensity of other frequencies ("side modes"). This ensures a "clean" and stable output for high-precision applications throughout the entire spectrum.

Power, accuracy, stability, low noise
The output power of chip level erbium-based fiber laser exceeds 10 mW, with a side mode suppression ratio greater than 70 dB, and its performance is superior to many traditional systems.

It also has a very narrow linewidth, which means that the light it emits is very pure and stable, which is crucial for coherent applications such as sensing, gyroscopes, LiDAR, and optical frequency measurement.

The micro ring based vernier filter provides wide wavelength tunability for 40 nm lasers in the C-band and L-band (wavelength range used in telecommunications), surpassing traditional fiber lasers in tuning and low spectral stray indicators ("stray" is an unnecessary frequency) while maintaining compatibility with current semiconductor manufacturing processes.

Next generation laser
Miniaturizing and integrating erbium fiber lasers into chip level devices can reduce their overall cost, making them suitable for portable and highly integrated systems in telecommunications, medical diagnostics, and consumer electronics.

Now, scientists led by Dr. Liu Yang and Professor Tobias Kippenberg from the Federal Institute of Technology in Lausanne have established the first ever chip integrated erbium-doped waveguide laser. The performance of this laser is close to that of fiber based lasers, combining wide wavelength tunability with the practicality of chip level photon integration. This breakthrough was published in the journal Nature Photonics.

But as the demand for laser based applications continues to grow, the challenges also increase. For example, the market for fiber lasers is growing and is currently used in industrial cutting, welding, and marking applications.

Fiber lasers use fibers doped with rare earth elements (erbium, ytterbium, neodymium, etc.) as their optical gain source (the part that produces the laser). They emit high-quality beams of light, have high power output, are efficient, low maintenance, durable, and typically smaller than gas lasers. Fiber lasers are also the gold standard for low phase noise, which means their beams will remain stable over time.

However, despite this, the demand for miniaturization of chip level fiber lasers continues to grow. Erbium based fiber lasers are particularly interesting because they meet all the requirements for maintaining high coherence and stability of the laser. However, miniaturizing them poses challenges in maintaining their performance on a small scale.

Building chip level lasers
Researchers have developed their chip level erbium laser using state-of-the-art manufacturing techniques. They first built a one meter on-chip optical cavity (a set of mirrors that provide optical feedback) based on ultra-low loss silicon nitride photonic integrated circuits.

"Although the chip size is compact, we are able to design the laser cavity in meter lengths thanks to the integration of these micro ring resonators, which effectively expand the optical path without the need for physical amplification equipment," said Dr. Liu.

Then, the team implanted high concentrations of erbium ions into the circuit to selectively generate the active gain medium required for the laser. Finally, they integrated citcuit with III-V semiconductor pumped lasers to excite erbium ions, enabling them to emit light and generate laser beams.

In order to improve the performance of the laser and achieve precise wavelength control, researchers have designed an innovative cavity design with a micro ring based cursor filter, which is a filter that can select specific frequency light.

Source: Laser Net

관련 추천
  • Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

    Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this bat...

    2023-09-25
    번역 보기
  • Application of Airborne Lidar Calibration Board in Various Fields

    With the rapid development of technology, airborne LiDAR technology has become one of the key technologies in modern surveying, remote sensing, navigation and other fields. As an important component of this technology, the airborne LiDAR calibration board plays a crucial role in ensuring the accuracy and stability of the radar system. This article will explore the application and importance of air...

    2024-04-08
    번역 보기
  • Enlightra and DESY Hamburg developed an improved and scalable comb laser

    Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard...

    2024-01-26
    번역 보기
  • The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

    Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.According to Han Htoon, a researc...

    2023-09-01
    번역 보기
  • Peking University has made significant progress in the field of photonic chip clocks

    Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for ...

    02-28
    번역 보기