한국어

Progress made in the research and development of high-performance electrically pumped topology lasers by the Institute of Semiconductors, Chinese Academy of Sciences

319
2024-06-06 14:22:49
번역 보기

Topological laser (TL) is a laser device designed and manufactured using the principles of topological optics, which can produce a robust single-mode laser and is an ideal light source for future new optoelectronic integrated chips. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection are still in the early stages of research. Therefore, it is crucial to develop design ideas and technical solutions to improve the output power of electrically pumped topology lasers.

Recently, the team led by Liu Fengqi, a researcher at the Institute of Semiconductors, Chinese Academy of Sciences, has made progress in the research and development of high-performance electrically pumped topology lasers. This study innovatively introduces the design of surface metal Dirac topological cavities (SMDCs), which are prepared on the surface metal layer to preserve the integrity of the active region, providing sufficient gain for achieving high-power output, thereby solving the problem of power improvement of electrically pumped topological lasers limited by active region etching; By utilizing the strong coupling between SMDC and the active region and optimizing the design of absorption edge and topological cavity parameters under low effective refractive index difference, robust topological interband mode operation was achieved, which was validated in the robust single-mode laser spectrum and far-field mode of topological lasers with different structural parameters.

Due to the fact that the SMDC design does not damage the active region and the SMDC structure has high surface radiation efficiency, the device achieved a single mode surface emission peak power of 150 milliwatts. In addition, the device has a vortex polarization far-field, and by introducing phase modulation, while maintaining the vortex polarization characteristics of the topological laser, a symmetrical adjustable far-field is obtained. This device is an ideal on-chip vortex polarized light source.

 

 

Structure of Electric Pumped THz SMDC TL Device


This work provides new ideas for the research and development of high-performance electrically pumped topology lasers, and has positive significance for promoting the development and application of high-performance electrically pumped topology lasers. The relevant research results are titled High power electrically pumped terahertz topological laser based on a surface metal Dirac vortex activity and published in Nature Communications. The research work was supported by the National Natural Science Foundation of China, the National Key R&D Program and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Source: Institute of Semiconductors, Chinese Academy of Sciences

관련 추천
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    번역 보기
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    번역 보기
  • Researchers enhance the signal of perovskite nanosheets

    In the field of optoelectronics, researchers from Busan National University in South Korea and the University of Oxford in the UK have successfully improved the signal amplification ability of CsPbBr3 perovskite nanosheets through innovative patterned waveguide methods, bringing new possibilities for the future of optoelectronics. This breakthrough not only has potential applications in fields suc...

    2024-02-22
    번역 보기
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    번역 보기
  • The Japanese research team has manufactured a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in fields such as laser processing

    Recently, a Japanese research team has developed a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in laser processing, biotechnology, and medical fields.As is well known, ultraviolet (UV) is an electromagnetic wave with a wavelength range of 100 to 380nm. These wavelengths can be divided into three regions: UV-A (315-380 nm), UV-B (280...

    2023-10-23
    번역 보기