한국어

Breakthrough in optical quantum simulation using long-lived polariton droplets

442
2024-03-27 16:35:32
번역 보기

Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and reconfigurability after optical manipulation.

Researchers specializing in quantum physics have made significant strides in stabilizing light based quantum fluids, marking an advancement in the simulation of complex systems. This success was achieved through the adoption of a new type of photonic grating technology on semiconductors.
This stability is achieved by connecting quantum light droplets into so-called "macroscopic coherent states". Essentially, scientists have demonstrated a technique that allows the use of light to simulate the interactions between synthetic atoms of various configurations. This innovative method greatly expands the potential for researchers to explore multi-body quantum phenomena in greater depth.

Part of the achievement stems from creating a bound state for polaritons in continuous media, which makes them less susceptible to radiation loss and endows them with effective negative mass. This keeps the polaritons stable and less prone to decay, despite the need for sustained laser pumping.

Polarized polariton droplets are made to interact and merge into broader, optically programmable complexes, paving the way for extensive experimental research on phenomena such as structured nonlinear lasers and quantum simulations.

Researchers are optimistic about the prospects of this technology. A unique discovery is the different interactions between polariton droplets within and near the grating plane, indicating interesting possibilities for observing new synchronous behaviors and modes in quantum fluids. This work is funded by the National Science Center of the United States and the Horizon 2020 research framework of the European Union.

The field of quantum physics has taken a significant step forward, as scientists from CNR Nanotec and the University of Warsaw have made significant breakthroughs in creating long-lived quantum fluids. Their research, published in the journal Nature Physics, highlights an exciting new method of generating stable quantum fluids through semiconductor photonic gratings. These polariton droplets exhibit great stability in terms of lifespan and can be reconfigured as needed using optical operations.

The essence of this discovery lies in its ability to maintain macroscopic coherence between quantum light droplets, providing a better method for simulating interactions between synthesized atoms. This simulation of multi-body quantum phenomena has enormous potential to expand our understanding of the quantum world.

One of the main features of this technology is the generation of bound states for polaritons in a continuous medium, which helps prevent radiation loss and effectively endow these particles with negative mass. This feature ensures better stability of polaritons, allowing for continuous exploration even if regular optical pumping is required.

With the continuous growth of the industry, market forecasts indicate an increasing interest in quantum technology, including quantum computing, secure communication, and sensing applications. It is expected that the quantum technology market will significantly expand in the coming years, with the potential to achieve breakthroughs, thereby completely changing various fields such as cybersecurity, finance, drug development, and materials science.

However, the industry faces some challenges, including implementing practical and scalable quantum systems, managing decoherence, and creating sustainable economic models for quantum technology enterprises. These obstacles highlight the necessity of continuous investment in research and development.

In short, the study of quantum fluids is only one of the rapidly developing fields in the quantum industry. The significance of this study is a significant and promising advancement in quantum simulation, which can uncover new insights into complex quantum systems. This study not only represents scientific progress, but also an important step towards the practical application of quantum principles in various technologies. With the continuous development of the quantum industry, it will bring breakthrough changes that will affect the future of the technology we know.

Source: Laser Net

관련 추천
  • Tsinghua University makes progress in the field of pre sensing optical computing

    In the era of the Internet of Things, visual image sensors, as key devices in the intelligent society, are embedded in various devices such as mobile communication terminals, smart wearable devices, automobiles, and industrial machines. With the continuous expansion of applications, higher requirements have been put forward for the system power consumption, response speed, safety performance, and ...

    2024-08-05
    번역 보기
  • Peking University has made significant progress in the field of photonic chip clocks

    Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for ...

    02-28
    번역 보기
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    번역 보기
  • Leya Invents Next Generation Agricultural Blue Laser Weeding Technology

    Laudado&Associates LLC (L&A), an agricultural technology development company headquartered in California, announced the Autonomous Agricultural Solutions Conference held at FIRA Robotics&last week in Salinas, California.This patent pending technology is a completely new design, designed by L&A, aimed at maximizing the commercial feasibility of laser weeding and thinning. It utilize...

    2023-09-27
    번역 보기
  • New discoveries bring progress in photon calculation

    International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way f...

    2024-04-27
    번역 보기