한국어

Luxiner launches LXR platform to set new standards for industrial laser microfabrication

171
2024-03-25 14:03:24
번역 보기

Luxiner, a globally renowned laser technology leader, proudly launches its latest innovative product, the groundbreaking LXR ultra short pulse laser platform. This cutting-edge technology represents a significant leap in industrial laser processing, providing unparalleled performance, versatility, and reliability.

In today's rapidly changing industrial environment, laser technology plays a crucial role in many fields, from microelectronics and semiconductors to automotive manufacturing and biomedical applications. Realizing the constantly evolving demand for higher precision, faster processing speeds, and more efficient material processing solutions, Luxiner has responded to the challenges by launching the LXR platform.

The LXR platform is designed specifically to meet the needs of modern industrial applications. Featuring a robust design with 24/7 operational readiness, reliable handling, and highly modular architecture that meets the needs of every customer; With its unique requirements, Luxiner's LXR platform has set a new benchmark for industrial USP lasers.

The LXR platform provides ultra short laser energy pulses to ensure high-quality material processing with minimal heat generation. This patented technology ensures precise ablation, minimal thermal damage, and excellent control of laser beam parameters, producing excellent results even in the most demanding applications.

The main functions of the LXR platform include: pulse energy up to 160 μ J: Ensure efficient and accurate material processing in various applications.
Power up to 160 W: promotes fast and efficient laser processing, improving productivity.
Beam quality M2<1.2: Provides excellent beam control, achieving excellent processing quality and accuracy.
Flexible pulse width: From a standard pulse width of 800fs to factory settings up to 12 ps, it can be optimized for different materials and applications.

Supports multiple wavelengths, including 1030 nm, 515 nm, and 343 nm, providing flexibility for various industrial applications.
Full digital control of pulse output: allows for precise customization of laser processing parameters to achieve the desired results.
Standard burst and fast burst modes: support optimization for deep carving, micro machining, surface texture, and more.
The blasting energy can reach up to 0.8 mJ, ensuring efficient and accurate material ablation even in demanding applications.

"We are pleased to bring the LXR platform to the market," said Antonio Raspa, Product Manager of Luxiner Solid State Laser. The unique feature of the LXR series platform lies in its unparalleled control and flexibility in laser pulse output. Its intuitive hardware and software interface enable seamless integration into the production line, simplifying the programming of operating parameters.

Luxiner has earned an excellent reputation in producing powerful and reliable laser sources, and the LXR platform continues this tradition. The LXR platform ensures optimal uptime and productivity, backed by Luxiner's excellent customer support and service.

The development of the LXR platform highlights Luxiner's commitment to innovation, industry collaboration, and deep understanding of customer needs. Luxiner's team of engineers and scientists worked tirelessly to bring this breakthrough technology to the market, setting clear industry standards for USP laser technology.

Source: Laser Net

관련 추천
  • Researchers have developed a QCL DFB continuous laser for gas detection

    Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.In 2004, the first commercial laser was introduced.Principle: In a single mode laser, the grating is etched into the active region to force the ...

    2023-08-16
    번역 보기
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    번역 보기
  • New Progress in Research on Three Lattice Photonic Crystal Surface Emission Lasers at Changchun Institute of Optics and Mechanics

    Recently, Tong Cunzhu, the research team of the Chinese President of Science, Chunguang Institute of Mechanical Mechanics, made important progress in the research field of photonic crystal surface emitting lasers (PCSEL), proposed a three lattice structure and achieved a low threshold 1550nm PCSEL. Relevant achievements were published in Light: Science and Application vol.13, 442024, and the famou...

    2024-03-15
    번역 보기
  • Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

    The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solutio...

    2024-10-08
    번역 보기
  • Graphene terahertz absorber and graded plasma metamaterials

    Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical...

    2024-05-20
    번역 보기