한국어

Scientists demonstrate powerful UV-visible infrared full-spectrum laser

323
2023-08-25 14:29:07
번역 보기
Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.
b. The bright white light circular spots emitted by the CPPLN sample.
c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.
d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM effects.
Source: Lihong Hong, Liqiang Liu, Yuanyuan Liu, Junyu Qian, Renyu Feng, Wenkai Li, Yanyan Li, Yujie Peng, Yuxin Leng, Ruxin Li, and Zhi-Yuan Li

High brightness ultra-wideband ultra-continuous white light laser has attracted more and more attention in physics, chemistry, biology, material science and other scientific and technological fields. Over the past few decades, many different methods have been developed to produce supercontinuous white lasers.

Most of them utilize a variety of third-order nonlinear effects, such as self-phase modulation (SPM) occurring in microstructured photonic crystal fibers or homogeneous plates, or noble gas-filled hollow fibers. However, the quality of these supercontinuum light sources is subject to some limitations, such as the small pulse energy at the nanojoule level, and the requirements of complex dispersion engineering.

Another more efficient means of expanding the laser spectral range is through the various second-order nonlinear effects (2nd-NL) of the quasi-phase matching (QPM) scheme. However, the spectrum and power scaling performance of these pure 2N-NL schemes are still poor due to the narrow pump band width, limited QPM operating bandwidth, and reduced efficiency of high order harmonic energy conversion.

How to solve these bad limitations in the 2nd-NL and 3rd-NL systems and make both to produce full-spectrum supercontinuum lasers with spectral coverage from ultraviolet to mid-infrared has become a great challenge.

In a new paper published in Light: Science & Applications: A team led by Professor Zhi-Yuan Li and colleagues from the School of Physics and Optoelectronics at South China University of Technology in China has demonstrated an intense, quadruple-frequency UV-Vis-IR full-spectrum laser source (300 nm to 5000 nm, peak value -25 dB) with an energy of 0.54 mJ per pulse. Aerated hollow core fiber (HCF) from a cascade structure, exposed lithium niobate (LN) crystal plates, specially designed chirped periodically polarized lithium niobate crystals (CPPLN) pumped by a 3.9 mm, 3.3 mJ mid-infrared pump pulse.

Pumped by a 3.3mJ 3.9μm mid-infrared femtosecond pulse laser, the HCF-LN system can generate a strong mid-infrared laser pulse of double bandwidth as a secondary FW pump input to CPPLN, which supports efficient broadband HHG processing, further extending the spectral bandwidth to UV-Vis-IR. It is clear that this cascade structure creatively satisfies two prerequisites for the generation of full-spectrum white light: Condition 1, a strongly frequency-doubled pump femtosecond laser, and condition 2, a nonlinear crystal with an extremely high frequency up-conversion bandwidth. In addition, the system involves a large number of synergies between 2nd-NL and 3rd-NL effects.

The synergistic mechanism they have developed provides superior capabilities for constructing UV-Vis-IR global supercontinuum spectra and filling spectral gaps between various HHGS, far exceeding what has been achieved with single-acting 2N-NL or 3rd-NL effects previously employed.

As a result, this cascaded HFC-LN-CPPLN optical module enables previously unachievable levels of strong full-spectrum laser output, not only with great bandwidth (spanning four octave multiplicities), but also with a spectral profile of high flatness (from 300 to 5000 nm, flatness better than 25 dB) and large pulse energy (0.54 mJ per pulse).

"We believe that our proposal is to use the synergy of 2NL-HHG and 3rd-NL SPM effects to create an intense four-octave UV-vision-infrared full-spectrum femtosecond laser source, which is a big step toward building supercontinuous spectral white laser sources with greater bandwidth, energy, higher spectral brightness, and flatter spectral profiles." "This intense full-spectrum femtosecond laser will provide a revolutionary tool for spectroscopy and find potential applications in physics, chemistry, biology, materials science, information technology, industrial processing and environmental monitoring," the scientists said.

Source: Chinese Optical Journal Network
관련 추천
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    번역 보기
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    번역 보기
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    번역 보기
  • The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

    A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements. This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scienti...

    2023-09-07
    번역 보기
  • The creator of a computer that uses lasers to perform complex tasks at the speed of light has announced a breakthrough in high-performance computing

    LightSolver's new LPU100 system is powered by 100 lasers and can solve the most challenging problems through up to 120100 combinations.This computer was created by Dr. Ruti Ben Shlomi, CEO of LightSolver and Dr. Chen Tradonsky, CTO, a physicist at the Rehowatt Weizmann Institute for Science.It is not suitable for household use because its high computing power exceeds individual needs, but it is su...

    2024-03-21
    번역 보기