한국어

Aerosol jet printing can completely change the manufacturing of microfluidic devices

876
2024-02-02 18:12:01
번역 보기

Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.

A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various materials, greatly reducing development time.

In a study published in Microsystems and Nanoengineering, researchers from Duke University and Virginia Tech were the first to integrate aerosol jet printing technology into the manufacturing of SAW microfluidic devices. This progress provides a faster, more universal, and cleanroom free method for developing chip laboratory applications, completely changing the field from biology to medicine.

In this groundbreaking study, the team utilized aerosol jet printing to manufacture SAW microfluidic devices. This method contrasts sharply with traditional and cumbersome cleanroom processes.

It involves depositing various conductive materials onto substrates to form interdigital transducers, which is crucial for generating SAW to manipulate fluids and particles at the microscale.

It is worth noting that this method reduces the manufacturing time of each device from approximately 40 hours to approximately 5 minutes. The team thoroughly analyzed the acoustic performance of these printing equipment using a laser Doppler vibrometer and compared it with the equipment manufactured in the cleanroom.

The results demonstrate enormous potential, with printing equipment exhibiting similar or acceptable performance levels in terms of resonant frequency and displacement field. This study represents a significant advancement in the manufacturing of microfluidic devices, providing a faster, more adaptable, and more efficient alternative to traditional methods.

Dr. Tian Zhenhua, co-author of the study, said, "This is not just a step forward; it is a leap towards the future of microfluidic device manufacturing. Our method not only simplifies the process, but also opens up new possibilities for device customization and rapid prototyping design.".

The impact of the new method is enormous, as it provides a more convenient, faster, and cost-effective way to produce microfluidic equipment. It has the potential to accelerate research and development in numerous fields, enabling faster diagnosis, improved drug delivery systems, and enhanced biochemical analysis.

In addition, the versatility of this technology indicates its adaptability to various materials and substrates, and it is expected to be widely applied in various disciplines.

Source: Laser Net

관련 추천
  • Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

    As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.Unlocking the precise me...

    2023-09-25
    번역 보기
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    번역 보기
  • HSG Laser launches new generation laser solutions

    HSG Laser unveiled its next-generation laser cutting solutions—the GH V2.0 high-power flatbed system and TS2 intelligent tube cutting machine—at its Düsseldorf showroom, marking a major milestone in its European market expansion. (Image: HSG Laser)Attended by customers and partners from across the continent, the event featured live demonstrations of both systems and highlighted HSG’s growing i...

    06-27
    번역 보기
  • 3D printed chocolate: a delicious fusion of innovation and sustainable development

    In the era of sustainable development and cutting-edge technology, the integration of 3D printing and culinary art is not only an innovation, but also a proof of human creativity. Imagine in such a world, your desserts are not just coming out of the kitchen, but carefully designed and printed layer by layer. This is not a glimpse of the distant future, but the reality of today, as developers have ...

    2024-02-19
    번역 보기
  • The First Operation of Two Color Mode in Infrared Free Electron Laser

    The Fritz Haber Institute of the Max Planck Institute in Berlin has achieved a technological milestone. The infrared free electron laser operates in dual color mode for the first time. This globally unique technology makes it possible to conduct experiments on synchronous dual color laser pulses, opening up new possibilities for research.There are over a dozen free electron lasers worldwide, with ...

    2024-02-18
    번역 보기