한국어

Scientists use the light inside fibers as thin as hair to calculate

222
2024-01-20 10:36:54
번역 보기

Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers.

"Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next major leap in computing technology," explained Professor Mehul Malik, an experimental physicist and physics professor at the Heriot School of Engineering and Physical Sciences.

But as optoelectronic circuits become larger and more complex, they become more difficult to control and manufacture, which may affect their performance. Our research demonstrates an alternative and more universal optoelectronic engineering method that utilizes processes that occur naturally in nature.

Professor Malik and his team are conducting research using widely used commercial optical fibers worldwide to transmit the internet to our homes and businesses. These fibers are thinner than the width of human hair and use light to transmit data.

By utilizing the natural scattering behavior of light inside optical fibers, they found that they could program the optical circuits inside the fibers in a high-precision manner.

This study was published today in the journal Nature Physics.

"When light enters optical fibers, it scatters and mixes in complex ways," Professor Malik explained. By studying this complex process and accurately shaping the light entering the fiber optic, we have found a way to carefully design the optical circuits inside this disease.

Optical circuits are crucial for the future development of quantum technology, which is designed at the microscopic level by working with individual atoms or photons. These technologies include powerful quantum computers with enormous processing power and quantum communication networks that cannot be hacked.

"For example, optical circuits are required at the end of quantum communication networks so that information can be measured after long-distance propagation," explained Professor Malik. They are also a crucial part of quantum computers, used for complex calculations of light particles.

Quantum computers are expected to make significant progress in areas such as drug development, climate prediction, and space exploration. Machine learning is another field that uses optical circuits to process large amounts of data very quickly.

Professor Malik said that the power of light lies in its multiple dimensions.
"We can encode a large amount of information on a single light particle," he explained. About its spatial structure, about its temporal structure, about its color. If you can use all these attributes for calculations simultaneously, it will release a lot of processing power.

The researchers also demonstrated how to use their programmable optical circuits to manipulate quantum entanglement, a phenomenon where two or more quantum particles can remain connected even when they are far apart. Entanglement plays an important role in many quantum technologies, such as correcting errors within quantum computers and achieving the safest types of quantum encryption.

Professor Malik and his research team at the Beyond Binary Quantum Information Laboratory at the University of Heriot conducted this study with collaborating scholars from institutions such as Lund University in Sweden, Sapienza University in Rome, and Twente University in the Netherlands.

Source: Laser Net

관련 추천
  • Coherent's revenue for 2024 is $5.301 billion

    International laser giant Coherent's Q4 2024 sales exceeded expectations, reaching a historic high!Recently, Coherent released its highest quarterly sales data in history, mainly due to the demand for optical transceivers in artificial intelligence data center applications. For the three months ending December 31, the company's revenue was $1.43 billion, a year-on-year increase of 27% and a 6% inc...

    02-10
    번역 보기
  • Trumpf 3D printing technology innovation: zero support structure, low waste, unlimited possibilities

    Ditzingen, Germany, September 8, 2023) - TRUMPF, the world's leading provider of machine tools and laser technology solutions, has improved its 3D printing software TruTops Print to print parts with suspension angles as low as 15 degrees with little need for support structures. Trumpf will present its new technology at the European International Machine Tool Show (EMO 2023) in Hannover, Germany.Fi...

    2023-09-13
    번역 보기
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    번역 보기
  • Tongkuai will launch a fully automatic laser drilling machine for interconnected manufacturing equipped with a 6-kilowatt fiber laser

    TRUMPF introduced its TruMatic 5000 manufacturing unit and new SheetMaster automatic loading and unloading device technology at the 2023 Blechexpo Metal Plate Processing Exhibition in Stuttgart, Germany.Users of the new system will benefit from fully automatic laser cutting, punching, and forming capabilities. The new SheetMaster device can achieve fully automated material flow within the manufact...

    2023-10-23
    번역 보기
  • BOFA launches the latest generation of high-temperature 3D printing filtration technology

    BOFA has consolidated its position as a market leader in additive manufacturing of portable smoke and particle filtration systems with the latest generation of 3D PrintPRO technology designed specifically for high-temperature processes.3D PrintPRO HT focuses on the 230V market and can filter high-temperature particles, gases, and nanoparticles emitted during polymer processing in the printing room...

    2024-04-15
    번역 보기