한국어

A new method for generating controllable optical pulse pairs using a single fiber laser

608
2024-01-15 14:10:02
번역 보기

Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.

Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechanically adjustable distances. Alternatively, a laser source with slightly different orbital periods ("double comb") can be used to generate rapid travel delay from the superposition of two pulse combs.

Professor Georg Herink, the head of the ultrafast dynamics research team for Experimental Physics VIII at Bayreuth University, and his doctoral students Julia A. Lang, along with Professor Alfred Leinstorfer and Dr. Sarah R. Hutter from the University of Constance, have collaborated to demonstrate a pure optical method based on two pulse combs in a single laser. It can achieve extremely fast and flexible adjustable pulse sequences. Meanwhile, this can be achieved in very compact, glass fiber based light sources. By temporarily merging the two pulse combs outside the laser, researchers have obtained a pulse mode that can be set with any delay as needed.

Schematic diagram of dual comb fiber laser oscillator, external pulse combination, and real-time detection.

The researchers used a technique: instead of the usual single light pulse, two pulses are cycled in the laser. The first author of the study, Lang, explained, "There is enough time between two pulses to apply a single" interference "using the fast optical switch inside the laser. Using the knowledge of laser physics, this" intracavity modulation "can cause changes in pulse velocity, causing the two pulses to offset each other in time." The laser source based on glass fiber is manufactured by Hutter and Leitenstorfer from the University of Konstanz.

Thanks to special real-time measurement methods, researchers at Bayreuth University can now accurately observe how short light pulses (called solitons) move when subjected to external influences. This real-time spectral interferometry technology can accurately measure the distance between each pair of pulses - over 10 million times per second. Herink explained, "We have demonstrated that we can adjust time extremely quickly on a large scale and achieve freely programmable forms of motion.". They proposed an innovative method for controlling solitons, which not only provides new insights into soliton physics, but also opens up possibilities for the particularly fast and efficient application of ultra short laser pulses. The research findings have been published in the journal Science Advances.

Source: Laser Manufacturing Network

관련 추천
  • Tunoptix makes breakthrough progress in meta optical platform

    Tunoptix, a developer of computational meta-optics, based in Seattle, WA, has made what it calls “a breakthrough in mobile-scale spectral imaging”. The company’s latest meta-optical platform captures high-fidelity spectral signatures across the visible-to-NIR spectrum in a compact form factor smaller than 1 cm3, consuming less than 500 mW, and operating at real-time frame rates.Tunoptix’s ultra-c...

    07-02
    번역 보기
  • Scene Cinemas Unveils Cinematic Changes with IMAX with Laser Upgrade

    Under the visionary leadership of acclaimed producer Hisham Abdel Khalek, Scene Cinemas proudly presents a revolutionary upgrade to its multiplex – IMAX with Laser. This cutting-edge upgrade, featuring a next-generation laser projection and multi-channel sound system exclusively for IMAX theaters, promises an unmatched cinematic journey.IMAX with Laser has a state-of-the-art 4K laser project...

    2023-12-07
    번역 보기
  • From Fiction to Reality: Laser Cutting Technology Has Entered the Shipbuilding Industry

    Laser cutting is a type of metal processing. In industry, there are three main cutting methods: mechanical cutting, thermal cutting, and a set of high-precision cutting methods. Laser technology belongs to the third category. The cutting in this method occurs due to the influence of the laser beam on the product. In fact, it is the molten metal produced by rapid pulse point melting and then blowin...

    2023-12-28
    번역 보기
  • The construction of China's first attosecond laser device in Dongguan provides strong impetus for breakthroughs in multiple major fundamental scientific issues such as quantum computing

    On October 3rd, the 2023 Nobel Prize in Physics was announced, recognizing scientists who have studied attosecond physics, marking the beginning of the attosecond era for humanity.At present, China's first attosecond laser device, the "Advanced attosecond Laser Facility", is being prepared and built in Dongguan, Guangdong, providing strong impetus for breakthroughs in multiple major basic scientif...

    2023-10-07
    번역 보기
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    번역 보기