한국어

Additive manufacturing of free-form optical devices for space use

376
2023-12-04 14:09:54
번역 보기

A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.

The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is now possible due to the emergence of suitable additive manufacturing techniques.

Freeform surface optical devices, such as reflectors, can now be designed and additive manufactured to present complex shapes, provide a larger field of view in smaller packaging sizes, and withstand harsh space environments.

Innovation Launch, Automation, New Materials, Communications, and Hypersonic Center Pioneer is a $180 million program aimed at commercializing the project to build Australia's space capabilities.

Darin Lovett, Executive Director of iLAuNCH Trailblazer, stated, "This project showcases the full content of iLAuNCH, using the 2021 Defense Innovation Partnership concept demonstrator, which investigates the feasibility of free-form optical components for small satellites and uses Australian technology to put them into production for real-world applications.".

An important requirement in the development of free-form optical devices is to be able to process additive manufactured parts to the extent that mirror finish can be developed.

Dr. Kamil Zuber, Senior Researcher at the University of South Australia, said, "We are developing optical grade finishes for additive substrates for satellite optical components.".

"We will also demonstrate the coating system for reflective optical components used in space applications."
Our project partners located in Adelaide, advanced manufacturer VPG Innovation, and mirror and camera system expert SMR Australia, have long-term experience in traditional and additive manufacturing, as well as product development in the automotive and defense sectors.

The additive manufacturing, molding, and vacuum coating capabilities of our partners make commercial production of developed products possible.
Dr. Bastian Stoehr, Senior Design Engineer at SMR Australia, stated that the company will contribute its advanced injection molding and coating expertise to the project.

Dr. Stoehr said, "More than a decade of collaboration has shown that the synergy between UniSA's research and Motherson's manufacturing capabilities brings greater results than the sum of its parts.".

The addition of St ä rke AMG's innovation focus will ensure that this joint venture not only drives South Australia to play a crucial role in space technology, but also reflects the true essence of cooperation.

Our joint efforts will redefine the possibilities of additive manufacturing and free-form surface optics, with the potential to have a transformative impact on the future of space exploration. When we contribute our efforts, we are not only driving technological progress, but also shaping a future that makes South Australia synonymous with cutting-edge value-added manufacturing.

Al Jawhari, co-founder and CEO of St ä rke AMG, stated that additive manufacturing has a transformative power and may actively reshape the manufacturing industry.
We are proud to lead these efforts in providing innovative satellite optical design and manufacturing for Earth observation and other critical applications.
We are working together to create a future where free-form optics will redefine the possibilities of space missions.

Source: Laser Net

관련 추천
  • Molecular orientation is key: a new perspective on revealing electronic behavior using two-photon emission spectroscopy

    Organic electronics has aroused great interest in academia and industry due to its potential applications in OLEDs and organic solar cells, with advantages such as lightweight design, flexibility, and cost-effectiveness. These devices are made by depositing organic molecular thin films onto a substrate that serves as electrodes and exerting their effects by controlling electron transfer between th...

    2024-03-19
    번역 보기
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    번역 보기
  • Ruifeng constant green laser: With dense and concentrated characteristics, it can accurately cut on PCBs and FPCs

    In the vigorous development of contemporary technology, green laser has become a shining star in the field of electronics. Not only because of its excellent performance, but also because it brings infinite imagination and creative inspiration to creators. The use of green laser for PCB (Printed Circuit Board) and FPC (Flexible Printed Circuit Board) shape cutting has opened up a new artistic journ...

    2023-09-19
    번역 보기
  • Laser fusion breakthrough brings greater energy explosion

    Recently, scientists from the National Ignition Facility at Lawrence Livermore National Laboratory in California produced a burst of energy by bombarding hydrogen pellets with 192 laser beams, briefly reproducing the fusion process that powers the sun. This is a repeat of an experiment in December last year, but this time the scientists generated more energy, with a gain almost double that of the ...

    2023-09-26
    번역 보기
  • BWT 969nm semiconductor pump source

    Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optic...

    05-09
    번역 보기