한국어

Photonic time crystals triggered by laser pulses may open the door to a new branch of optics

868
2023-09-07 15:09:14
번역 보기

When scientists discovered that laser pulses can rapidly cause refractive index changes in the medium, resulting in "photonic time crystals (PTC)" in the near-visible light band, the door to a disruptive new application in optics seemed to quietly open.

Scientists have a certain degree of understanding of photonic crystals and time crystals, the two have almost nothing in common, the basic common point is that both will produce structures over time.

Photonic crystals are artificial periodic dielectric structures, which are periodically arranged by media of different refractive indices, and can block photons of specific frequencies and then affect photon motion. In other words, the periodic dielectric structures with "photonic frequency bandgap" are called photonic crystals. In addition, there are photonic crystals in nature, which can be seen from the flickering of insect wings or precious minerals.

A time crystal is a quantum system composed of repeated motions of particles in the lowest energy state. Compared with regular crystals that repeat periodically in space, time crystals will repeat periodically in time and show a permanent state, for example, they change with time, but they will always return to the original state.

Photonic time crystals are materials whose electromagnetic properties change greatly with time, or represent a specific type of time crystal, whose refractive index rises and falls rapidly with time, and there is more than one type of photonic time crystal.

It is proved that stable photonic time crystals can also exist in near visible wavelengths

In order to maintain the stability of photonic time crystals, the refractive index must be made to rise and fall in line with the single period of electromagnetic waves of a specific frequency, so far scientists have only observed photonic time crystals at the lowest frequency end of the electromagnetic spectrum (radio waves), and it is quite challenging to find photonic time crystals in the optical field.

But according to new research led by Technion Israel scientist Mordechai Segev, Purdue University scientists Vladimir Shalaev, AlexndraBoltasseva and others, the team sent laser pulses with a wavelength of 800 nanometres through transparent conductive oxides (TCO), It was found that the time required for each refractive index change was very short (less than 10 femtoseconds), constituting the single period required to form a stable PTC.

Normally, electrons excited to high energies in a time crystal take 10 times more time to return to the ground state, but this experiment found that the relaxation time of light (the time required for the refractive index to return to normal) is extremely short, basically "impossible things."

It is not yet clear why this happens or how it will eventually be applied, but it could lead to breakthroughs in optics, just as physicists in the 1960s began to discover what practical applications laser beams could bring, perhaps in highly efficient laser-based particle accelerators or highly sensitive particle detectors with adjustable angular resolution.

The new paper is published in the journal Nanophotonics.

Source: Laser Network

관련 추천
  • An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

    The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.The specific technique...

    2024-11-13
    번역 보기
  • 3D printing giant Materialise reorganizes

    Recently, the stock price of Materialise, a well-known company in the 3D printing industry, plummeted by 35% overnight. This news was like a heavy bomb, instantly causing a storm in the industry! What exactly happened to Materialise, which was originally developing steadily? Why has there been such a significant drop in stock prices? Today, let's delve into the reasons behind this.The truth behind...

    03-03
    번역 보기
  • Reverse Modeling of 3D Scanning Reading in Hong Kong: Production Innovation in the Digital Era

    In the wave of the digital age, Hong Kong, as an international business center, constantly explores the application of new technologies in the manufacturing industry. Among them, 3D scanning and reverse modeling technology is emerging, bringing a new production innovation to the manufacturing industry. This article will explore the application of 3D scanning and reverse modeling in Hong Kong, as w...

    2024-03-30
    번역 보기
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    번역 보기
  • Scientists have made breakthrough progress in using laser to cool sound waves

    A group of researchers from the Max Planck Institute of Optoelectronics has made a significant breakthrough in using laser cooling to travel sound waves. This development brings us one step closer to the quantum ground state of sound in waveguides, which is of great significance for quantum communication systems and future quantum technology.By using laser cooling, scientists can significantly red...

    2024-01-22
    번역 보기