한국어

Optical Capture of Optical Nanoparticles: Fundamentals and Applications

510
2023-11-25 14:18:38
번역 보기

A new article published in Optoelectronic Science reviews the basic principles and applications of optical capture of optical nanoparticles. Optical nanoparticles are one of the key elements in photonics. They can not only perform optical imaging on various systems, but also serve as highly sensitive remote sensors.

Recently, the success of optical tweezers in separating and manipulating individual optical nanoparticles has been demonstrated. This opens the door to high-resolution, single particle scanning, and sensing.

This article summarizes the most relevant results in the rapidly growing field of optical capture of individual optical nanoparticles. According to the different materials and their optical properties, optical nanoparticles can be divided into five categories: plasma nanoparticles, lanthanide doped nanoparticles, polymer nanoparticles, semiconductor nanoparticles, and nanodiamonds. For each scenario, the main progress and applications were described.

Plasma nanoparticles have a high polarization rate and high photothermal conversion efficiency, therefore, it is necessary to make a critical selection of their capture wavelength. The typical application of optical capture based on the luminescent properties of plasma nanoparticles is the study of particle particle interactions and temperature sensing. This study was conducted by analyzing the radiation absorbed, scattered, or emitted by nanoparticles.

Lanthanide doped nanoparticles have a narrow emission band, longer fluorescence lifetime, and temperature sensitive emission intensity. This article reviews the temperature sensing of batteries achieved by single optical capture of lanthanide doped nanoparticles. The structural characteristics of the main body of lanthanide doped nanoparticles allow these particles to rotate. For a fixed laser power, the rotational speed depends on the viscosity of the medium. Research has shown that this characteristic can be used to measure intracellular viscosity. In addition, the sufficient surface functionalization of lanthanide doped nanoparticles enables them to be used for chemical sensing.

Dyes are incorporated into polymer nanoparticles to emit light and facilitate tracking within optical traps. This article reviews the research on the dynamics of individual nanoparticles and the characterization of biological samples using particle luminescence tracking ability. It not only helps to gain a more thorough understanding of the optical and mechanical interactions between captured lasers and optical particles, but also points out the enormous potential of combining optical capture with fluorescence or scanning microscopy.

Semiconductor nanoparticles have received widespread attention due to their unique photoluminescence properties, such as tunable emission, low sensitivity to photobleaching, high quantum yield, and chemical stability. This article reviews the research progress on using optical tweezers to study and improve the luminescence performance of individual semiconductor nanoparticles. They also summarized research on using semiconductor particles as local excitation sources for cell imaging.

The fluorescence of nanodiamonds is caused by point defects in the diamond structure. Bibliographic research indicates that there are limited reports on optical capture of nanodiamonds. The first report on this topic shows that a single nanodiamond can be used as a magnetic field sensor. Later, optically captured nanodiamonds were also proven to be useful as cell thermometers.

This review article also reveals how the combination of optical capture and colloidal optical nanoparticles can be used for various applications. Despite the enormous potential of optical tweezers in the study of individual nanoparticles, this field is still in its early stages. Most works focus on application rather than filling knowledge gaps. There are still some unresolved issues.

This review summarizes the challenges faced by optical capture of nanoparticles, including the lack of precise formulas to describe optical force, uncertainty in spatial resolution, and possible sensing biases. This review is expected to promote the continuous enrichment and development of principles, technologies, equipment, and application research in this field.

Source: Laser Net


관련 추천
  • Progress in the Application of China University of Science and Technology's Femtosecond Laser Processing Technology in the Biomedical Field

    Recently, Associate Professor Li Jiawen's research group at the Micro and Nano Engineering Laboratory of the School of Engineering Science, University of Science and Technology of China proposed a femtosecond laser dynamic holographic processing method suitable for efficient construction of three-dimensional capillary scaffolds, which is used to generate a three-dimensional capillary network. This...

    2024-02-11
    번역 보기
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    번역 보기
  • Lumiotive Launches New LiDAR Sensor LM10

    Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in term...

    2023-09-02
    번역 보기
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    번역 보기
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    번역 보기