한국어

A new method of generating laser without the need for mirrors

63
2025-10-30 10:34:50
번역 보기

A new laser generation method: a laser without a reflector. This study, conducted by a team of physicists from the University of Innsbruck and Harvard University, shows that quantum emitters with spacing smaller than the wavelength can achieve constructive synchronization of photon emission, resulting in bright and extremely narrow bandwidth beams, even without any optical resonant cavities.

The achievement is described in Physical Review Letters; the work was financially supported by the Austrian Science Fund (FWF) and the European Union, among others.

In conventional lasers, mirrors are essential to bounce light back and forth, stimulating coherent emission from excited atoms or molecules, and thus light amplification.

But in the new “mirrorless” concept, the atoms interact directly through their own electromagnetic dipole fields given that interatomic spacing is smaller than the emitted light’s wavelength. When the system is pumped with enough energy, these interactions cause the emitters to lock together and radiate collectively—a phenomenon called superradiant emission.

 


Passive emitters can significantly enhance the emission of light


‘Highly directional and spectrally pure’

The team led by Helmut Ritsch found that this collective emission generates light that is both highly directional and spectrally pure, with a single narrow spectral line, in cases where only a fraction of emitters are excited by incoherent light and the rest of atoms remain unpumped.Since this passive emitter fraction is not broadened by the external light or power broadening, it effectively acts as an optical resonator for the active emitters, in analogy with a conventional laser where the optical resonator and the gain medium are separate physical entities.

“The atoms synchronize their emission and above a certain threshold start to shine light collectively or in unison with each other,” said Anna Bychek, a postdoc from the Department of Theoretical Physics at the University of Innsbruck. “There are still many questions to be studied in future work, but it is clear that atoms build their own feedback mechanism and frequency selection via dipole-dipole interaction in free space.”

Beyond its conceptual significance, this discovery points to a new class of ultra-compact light sources for nanophotonics and precision measurements. Because the emission frequency is determined primarily by the atoms themselves, such systems could provide exceptionally stable optical references for quantum sensors, clocks, or on-chip devices.

The research combines the theory of light-matter interactions with advanced numerical methods to explore how large atomic ensembles behave collectively and emit coherent radiation. The results suggest that with ongoing progress in the field, mirrorless lasing could soon move from theoretical prediction to experimental realization.

Source: optics.org

관련 추천
  • Scene Cinemas Unveils Cinematic Changes with IMAX with Laser Upgrade

    Under the visionary leadership of acclaimed producer Hisham Abdel Khalek, Scene Cinemas proudly presents a revolutionary upgrade to its multiplex – IMAX with Laser. This cutting-edge upgrade, featuring a next-generation laser projection and multi-channel sound system exclusively for IMAX theaters, promises an unmatched cinematic journey.IMAX with Laser has a state-of-the-art 4K laser project...

    2023-12-07
    번역 보기
  • The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

    A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements. This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scienti...

    2023-09-07
    번역 보기
  • Amplitude's 2024 performance shows steady growth

    In 2024, Amplitude's performance will continue to maintain steady growth, thanks to our continuous innovation in femtosecond laser technology and deep market expansion The application performance of high-power femtosecond lasers in precision microfabrication and industrial manufacturing such as semiconductors is particularly impressive, "said Ruan Xia, Sales Director of Amplitude Laser Solutions D...

    02-17
    번역 보기
  • Credo launches the world's first 800G DSP for linear receiving optical devices, targeting ultra large scale and artificial intelligence data centers

    Credo Technology Group Holding Ltd announced today the launch of the industry's first Dove 800 850G digital signal processor IC, which has been optimized for linear receiving optical devices and is also known as semi retiming linear optical devices in the industry. In LRO transceivers or active optical cables, only the transmission path from the electrical input to the output of the optical path i...

    2023-11-30
    번역 보기
  • How Many Laser Enterprises are There in China?

     China's laser industry began in the 1980s, when the first private laser enterprise, Chutian Industrial Laser, was founded in 1985 by Sun Wen, an alumnus of Huazhong University of Science and Technology. In the 1990s, some young people with dreams began to make their mark in the laser industry. In 1995, Gao Yunfeng, 29, rented an apartment in Huaqiangbei with a deposit of 400,000 Hong Kong dollar...

    06-30
    번역 보기