한국어

Scientists simulate the conditions that allow photons to collide with photons by using lasers

358
2023-08-11 15:15:06
번역 보기

As far as quantum physics is concerned, one of the most striking predictions is that matter can be produced entirely from light (i.e., photons). Pulsars are an example of an object capable of achieving this feat.

In a recent study reported in the journal Physical Review Letters, a research team led by scientists at Osaka University simulated the conditions that allow photons to collide with photons just by using lasers.

The ease of setup and comfort of implementation at the currently available laser intensities make it a promising candidate for experimental implementation in the near term.

Photon to photon collisions are theorized to be the fundamental method of creating matter in the universe, derived from Einstein's famous equation E=mc 2. In fact, scientists have created matter indirectly through light: through the high-speed acceleration of metal ions such as gold to bind to each other.

At such high speeds, each ion is surrounded by photons, and as they skim past each other, matter and antimatter are created. However, due to the need for extremely high power lasers, it is difficult to experimentally produce substances in modern laboratories using only lasers.

Simulating how such a feat would be achieved in the lab would be an experimental breakthrough, and one that scientists are hoping to achieve.

Sugimoto added, "The collider contains dense gamma rays that are ten times denser than electrons in a plasma and a million times more energetic than photons in a laser."

The photon-photon collision in the collider produces an electron-positron pair, which is accelerated by the plasma electric field generated by the laser. This produces a positron beam.

Dr Vyacheslav Lukin, program director at the National Science Foundation, which supported the work, said: "This research demonstrates a potential way to explore the mysteries of the universe in a laboratory setting. The future possibilities for high-power laser facilities today and tomorrow become even more interesting."

The application of this work to Star Trek's fictional matter-energy conversion technology is still only fictional. However, the work could help to experimentally validate theories of the universe's composition, and may even help to figure out early unknown physics.

Source: Laser Network



관련 추천
  • Beyond Limits: The Amazing Power of Water in Laser Development

    Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and u...

    2024-02-26
    번역 보기
  • New Meltio robot unit provides large-scale line laser DED

    Meltio is an expert in the field of cost-effective linear laser metal deposition additive manufacturing technology (directed energy deposition, DED) and has launched the new Meltio Robot Cell, a turnkey metal additive manufacturing solution equipped with industrial robotic arms and the recently launched slicing software Meltio Space.The new hardware aligns with the vision of this Spanish company t...

    2023-09-22
    번역 보기
  • A German research team has developed a new type of perovskite stacked battery

    According to relevant media reports, a research team from the Helmholtz Center in Berlin, Germany, and Humboldt University has jointly developed a new type of perovskite stacked battery. This battery has broken the world record for similar batteries with a photoelectric conversion efficiency of 24.6%. In the solar cell family, in addition to silicon-based solar cells, there are also thin-film so...

    02-08
    번역 보기
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    번역 보기
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    번역 보기