한국어

The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

820
2023-10-12 13:59:58
번역 보기

An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.

The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale laser pulses in ambient air".

From gravitational wave astronomy, quantum metrology, ultrafast science, to semiconductor manufacturing, controlling the intensity, shape, direction, and phase of coherent light is crucial in many fields. However, modern photonics may involve parameter regions where wavelength or high optical power limits control due to absorption, light induced damage, or optical nonlinearity in solid media. Here, researchers suggest using high-strength ultrasound customized gaseous media to avoid these limitations.

Researchers demonstrated the implementation of this method by effectively deflecting ultrashort laser pulses in ambient air using ultrasound without the need for transmitting solid media. At a peak optical power of 20 GW, the deflection efficiency of the researchers exceeded 50% while maintaining excellent beam quality, exceeding the limit of previous solid-state based acoustooptic modulation by about three orders of magnitude. The researchers' methods are not limited to laser pulse deflection; The gas-phase photon scheme controlled by sound waves may be used to implement new optical components such as lenses or waveguides, which can effectively resist damage and operate in new spectral regions.

This innovative technology utilizes sound waves to modulate the air in the area where the laser beam passes through. Researchers have generated an invisible grating using acoustic density waves.

With the help of special speakers, researchers have formed areas of high and low density in the air, forming stripe gratings. Due to the difference in air density, the light in the Earth's atmosphere bends, so this density pattern acts as a grating, changing the direction of the laser beam.

In the first laboratory test, the efficiency of reorienting strong infrared laser pulses in this way was 50%. According to the numerical model, higher efficiency should be achieved in the future.

In this animation, a laser beam passes through a speaker reflector array, which generates an air grating. The interaction between the laser beam and the grating causes deflection without contact. Source: DESY Science Communication Laboratory
The research team believes that this technology has great potential in the field of high-performance optics. In the experiment, researchers used infrared laser pulses with a peak power of 20 gigawatts, which is equivalent to the power of approximately 2 billion LED bulbs. This type of laser with even higher power levels can be used for material processing, nuclear fusion research, or the latest particle accelerators.

Scientists emphasize that the principle of acoustic control of lasers in gases is not limited to the generation of optical gratings. It is likely to be applied to other optical components such as lenses and waveguides.

The technology of directly deflecting light in ambient air has been confirmed, opening up promising applications, especially as a fast switch for high-power lasers. Modern optics is almost entirely based on the interaction between light and solid matter. The researchers' methods have opened up a new research direction.

Source: Sohu

관련 추천
  • Tower Semiconductor is preparing to add laser integrated PIC for Scintil

    Grenoble stated that in the context of growing demand driven by artificial intelligence and 5G, "key" milestones have strengthened its supply chain.Scantil Photonics, a subsidiary of CEA Leti that focuses on silicon photonics, has stated that its integrated laser design is now being produced by Tower Semiconductor, a wafer foundry partner.This method describes this development as a "crucial step f...

    2024-02-29
    번역 보기
  • Purchase Atomstack S20 Max 657W laser engraving machine from CAFAGO for 20 euros

    Want to unleash your creativity with cutting-edge laser engraving machines? The new Atomstack S20 Max 20W laser engraving machine is your perfect choice! With a series of groundbreaking features and larger creative space, this machine's beast will completely change your laser carving experience.Farewell to restrictions! The Atomstack S20 Max has a wide working area of 850 * 400mm, and can easily m...

    2023-11-11
    번역 보기
  • Integra Optics launches groundbreaking XGS-PON and GPON combined OLT SFP+optical transceivers

    Infinite Electronics brand and innovative operator level global supplier of fiber optic components, Integra Optics, announced the launch of its latest innovative product, the XGS-PON and GPON combination OLT SFP+BiDi optical transceiver module. This module integrates the passive optical network OLT and GPON OLT optical modules of XG (S), promoting seamless network rate deployment within the optica...

    2024-04-11
    번역 보기
  • Visual platforms bring new perspectives to optical research

    The advanced testing platform of Liquid Instruments is now available for Apple Vision Pro, providing optical researchers with the first interactive 3D testing system. By integrating the Moku system with camera based visual devices, the efficiency of the laboratory has been significantly improved.The Moku platform utilizes the processing power of field programmable gate arrays (FPGAs) to provide a ...

    2024-05-23
    번역 보기
  • NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

    Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejec...

    2023-10-31
    번역 보기