한국어

UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

199
2023-10-09 14:39:31
번역 보기

According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.


According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 times the brightness of the strongest sunlight.

A single laser pulse will generate power equivalent to the power generated by the entire British National Power Company, but it lasts less than 1 trillion millionths of a second and only focuses on a target with a diameter of a few micrometers. This laser is expected to be completed by 2029 and will be used to test methods for generating energy through nuclear fusion. Generating energy through nuclear fusion is a dream goal for physicists.

Scientists at other facilities, mainly the Lawrence Livermore National Laboratory in California, USA, are already using high-power lasers to fuse hydrogen atoms together. This can generate helium and energy, reflecting the reactions occurring inside the sun. The latest research results from Lawrence Livermore National Laboratory suggest that the energy obtained from this process may exceed the energy invested in it. However, in order to be commercially viable, the efficiency of this process must be greatly improved.

According to reports, the "Vulcan" 20-20 laser will be used to study basic physics, especially for researchers to explore the so-called "shock ignition".

Generally speaking, a fuel particle the size of a pepper - composed of two hydrogen isotopes, deuterium and tritium - is placed in a plastic capsule. The laser beam transforms the capsule into a plasma, causing it to rapidly expand. This causes fuel particles to be crushed to 30 times their original size in one billionth of a second. The pressure reaches 6 times the internal pressure of the sun. If everything goes smoothly, the fuel will "ignite" at a temperature of around 100 million degrees Celsius, triggering a controllable and energy generating fusion reaction.

Physicists will use the "Vulcan" 20-20 laser to observe different parts of this process. The aim is to test some ideas that may be used in the future to build experimental power stations, said Robbie Scott, a plasma physicist at the UK Council for Science and Technology Equipment.

According to the report, one challenge is to study how to use a series of laser beams to evenly crush a fuel particle from all directions simultaneously. In a full-scale power plant, this achievement may take up to 10 times a second to achieve.

The "Vulcan" 20-20 laser will also be used in "laboratory astrophysics", allowing scientists to simulate conditions in phenomena such as supernovae. A supernova is a violent explosion experienced by certain stars towards the end of their evolution.

It may also be used to convert light into matter. This can be achieved by colliding photons, creating electron and positron pairs. These matter and antimatter particles are believed to have been generated around neutron stars in distant space, but we have almost no idea how they formed.

Alex Robinson, also from the UK Council on Science and Technology Equipment, said, "If you could use a high-power laser beam to create these electron and positron pairs, you might be able to understand how this happened. In fact, there is no other scientific device that can make you do this.

According to reports, the "Vulcan" 20-20 laser will be built at the UK Science and Technology Equipment Council Center Laser Facility, which is part of the Rutherford Appleton Laboratory. The first phase of the project has just begun. The UK government supported research funding agency, the UK Research and Innovation Agency, provided £ 85 million for the central laser device.

The "Huoshen" 20-20 laser will produce a main laser line with a power of 20 petawatts, and in addition, 8 high-energy laser lines will be produced. This will make it the world's largest power laser.

Professor Mark Thomson from the UK Council for Science and Technology Equipment said: 'The Vulcan 20-20 project will put the central laser device at the forefront of high-power laser science and make new experiments in key areas such as renewable energy research possible.'

Source: Laser Manufacturing Network

관련 추천
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    번역 보기
  • The carbon dioxide laser market is expected to reach 7.1 billion US dollars by 2033

    The carbon dioxide laser market will show significant elasticity and sustained growth in the next decade, with a compound annual growth rate of 3.6% expected from 2023 to 2033.This impressive prediction indicates the persistent demand and expanding application of carbon dioxide lasers in various industries.By the end of 2033, the market is expected to reach a significant valuation of $7.1 billion,...

    2023-10-27
    번역 보기
  • The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

    Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.The Laser Energy Laboratory (LLE) at the University of Rochester is one of the...

    2023-10-26
    번역 보기
  • Phil Energy from South Korea wins mysterious order from European battery manufacturer

    Recently, Phil Energy, a South Korean secondary battery equipment manufacturer, successfully won an order from a European battery manufacturer to manufacture the next generation 46 series cylindrical battery manufacturing equipment. At present, both parties have signed a supply agreement for this cooperation, but have not disclosed the customer name and order size to the public. It is understood...

    2024-07-25
    번역 보기
  • German optoelectronic component manufacturer collaborates heavily to develop VCSELs lasers

    This collaboration deeply integrates the unique expertise and cutting-edge technological achievements of both companies in the field of optoelectronics, aiming to broaden the boundaries of optoelectronics innovation.EPIGAP OSA Photonics GmbH, as a leader in the research and manufacturing of optoelectronic components in Germany, is deeply rooted in multiple fields such as medical technology, indust...

    2024-08-06
    번역 보기