한국어

The Japanese team uses laser technology for ice core sampling to accurately study climate change

785
2023-09-23 10:20:57
번역 보기

Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.


The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast Antarctica)
(Image source: RIKEN)


The depth resolution of the new system is 3 millimeters, three times lower than the currently available resolution, which means it can detect temperature changes that occurred in a shorter period of time in the past.

The new laser melting sampler (LMS) is expected to help reconstruct continuous annual temperature changes thousands to hundreds of thousands of years ago, which will help scientists understand past and present climate change. This study was published in the Journal of Glaciology on September 19, 2023.

Draw a climate history map
Tree rings can tell us the age of trees, and the color and width of the rings reveal information about the local climate in those years. The annual growth of glaciers can also tell us this information, but it often takes much longer. The team of scientists led by Yuko Motizuki also hopes that they can study past climate change by analyzing cylindrical ice cores extracted from glaciers.

By regularly sampling along the core, researchers can reconstruct a continuous temperature distribution. However, for samples collected from depths, this is impossible because the annual accumulation there is usually compressed to sub centimeters.

Currently, scientists typically use two standard ice core sampling methods. One method yields a depth accuracy of approximately 10 millimeters, which means that data accumulated for years less than 10 millimeters will be lost, and any significant climate change event will be missed. Another method has good depth accuracy, but it destroys some of the samples required for analyzing water content, which is the main method used by scientists to calculate past temperatures.

The new laser melting sampler overcomes these two problems: it has high depth accuracy and does not damage the key oxygen and hydrogen isotopes found in water, which are necessary for inferring past temperatures.

From: Ofweek





관련 추천
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    번역 보기
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    번역 보기
  • Sweden's powerful laser system generates ultra short laser pulses

    For the first time, researchers at Umeå University, Sweden, have demonstrated the full capabilities of their large-scale laser facility. The team reports generating a combination of ultrashort laser pulses, extreme peak power, and precisely controlled waveforms that make it possible to explore the fastest processes in nature.Umeå’s laser is 11 m long and generates very short pulses László Vei...

    08-20
    번역 보기
  • The United States is expected to use "AI+lasers" to deal with space debris in the future

    Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deploye...

    2023-10-20
    번역 보기
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    번역 보기