한국어

Excitation of nanostructures with two near-infrared lasers to increase emission intensity

508
2025-09-28 15:47:32
번역 보기

Recently, researchers from the Ultrafast Phenomena Laboratory at the University of Warsaw in Poland, in collaboration with a team from the Institute of Low Temperature and Structural Studies at the Polish Academy of Sciences, discovered an enhanced effect on upconversion nanoparticle emission. Relevant personnel have demonstrated that simultaneously exciting these nanostructures with two near-infrared lasers will result in a significant increase in emission intensity.

 



Under carefully chosen conditions, visible emission emerges only when both beams are applied together, even though neither beam alone produces any emission at all. The researchers then showed how this technique can be used to visualize infrared radiation beyond the sensitivity range of standard detectors.

Among photoactive materials used in photonic technologies, those that absorb lower-energy photons and emit higher-energy ones stand out. This process is made possible by sequential absorption of multiple photons, followed by the emission of a single photon with higher energy. While photon up-conversion remains one of the most widely used features of these materials, other applications arise from their nonlinear response, that is, the intensity of the emitted light is not a linear function of the excitation intensity. This nonlinearity makes lanthanide-doped upconverting nanoparticles particularly useful in enhancing the resolution of microscopic imaging. 

The current study, spearheaded by Paulina Rajchel-Mieldzioc, a Ph.D. candidate at the Ultrafast Phenomena Lab at the Institute of Experimental Physics, leveraged the fact that rare-earth metal ions, the photoactive core of upconverting nanoparticles, exhibit a complex structure of energy levels, allowing them to interact with light across a wide range of wavelengths. The study found that when these nanoparticles are illuminated not only with light of a wavelength typically used for excitation but also with additional beams in the NIR range, the emitted light intensity can increase dramatically, sometimes by several-fold.

“Furthermore, under specific conditions, visible light emission can be triggered only through the joint action of two NIR beams — neither of which produces the effect on its own” said Rajchel-Mieldzioc.

The work, according to the team, could have applications beyond infrared detection and its conversion to visible light, including in the development of novel microscopy techniques and purely optical computing.

This research was published in ACS Publications.

Source: photonics

관련 추천
  • AM Research has released its latest quarterly data and forecast report

    Recently, additive manufacturing research company AM Research released its latest quarterly data and forecast report, which deeply analyzes the latest developments in the global 3D printing market, covering multidimensional analysis of suppliers, printing technology, geographic location, and application areas.According to the report, the global 3D printing market once again demonstrates strong gro...

    2024-09-29
    번역 보기
  • Lidar manufacturer RAYZ has completed a round A financing of nearly 100 million yuan

    Recently, RAYZ, a leading research and production company for high-performance LiDAR, announced the successful completion of the A-round financing. This round of financing was led by SMIC Juyuan, and well-known institutions such as Juntong Capital, Feitu Capital, Qiandao Investment, and Qiyu Chuangying also participated in this round of financing. The new round of financing will be used for the re...

    2023-10-20
    번역 보기
  • NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

    NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian...

    2024-05-13
    번역 보기
  • Breakthrough in optical quantum simulation using long-lived polariton droplets

    Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and rec...

    2024-03-27
    번역 보기
  • German laser company Marvel Fusion recently raised 62.8 million euros in funding

    Recently, Marvel Fusion, a private German company dedicated to commercializing fusion energy through its own laser technology, announced that it has recently raised 62.8 million euros in Series B funding. This round of investors includes HV Capital, b2venture, Earlybird Venture Capital, Athos Venture, Primepulse, Plural Platform, and Deutsche Telekom. Meanwhile, Marvel Fusion has also received add...

    2024-10-12
    번역 보기