日本語

Scientists decipher the code for extending the lifespan of perovskite solar technology

340
2025-03-03 15:28:10
翻訳を見る

The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.

Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial potential has always been limited by structural defects, mainly iodine leakage issues. Over time, the escape of iodine can lead to material degradation, reducing device performance and durability.

Through collaboration with the UK National Physical Laboratory and the University of Sheffield, scientists have discovered a solution: embedding alumina (Al2O3) nanoparticles in batteries to capture iodine elements. This breakthrough paves the way for the development of a new generation of solar cells with longer lifespan and lower cost.

The corresponding author of the study, Dr. Hashini Perera from the Institute of Advanced Technology at the University of Surrey, said, "Our research results are exciting. Ten years ago, the idea of long-term stable operation of perovskite cells in real environments was still out of reach. Through this improvement, we have achieved a breakthrough in stability and performance, pushing perovskite technology further towards mainstream energy solutions.

 



Dr. Hashini Perera, a graduate student at the Institute of Advanced Technology at the University of Surrey
This study, published in the journal EES Solar, tested the improved battery by simulating high temperature and high humidity conditions in real environments. The results showed that solar cells embedded with Al2O3 nanoparticles maintained high performance in tests lasting over two months (1530 hours), with a tenfold increase in lifespan compared to unimproved cells with only 160 hours.

Further analysis shows that Al2O3 nanoparticles not only help form a more uniform perovskite structure, reduce defects, and improve conductivity, but also form a two-dimensional perovskite protective layer, effectively blocking moisture erosion.

Dr. Imalka Jayawardena from the Advanced Technology Institute at the University of Surrey added, "By addressing the common challenges of perovskite technology, our research has opened up new possibilities for developing more economical, efficient, and easily accessible solar energy technologies. This is a crucial step in developing high-performance practical solar cells that will accelerate their global commercialization process.

Professor Ravi Silva, Director of the Institute of Advanced Technology and Interim Director of the Surrey Institute for Sustainable Development, emphasized that "as the net zero emissions target approaches, expanding the application of renewable energy is more urgent than ever. Such technological breakthroughs will play a key role in meeting global energy demand and promoting sustainable development transformation. The latest analysis by the Confederation of British Industry also shows that skills training in the renewable energy sector can not only enhance career prospects, but also bring higher salaries than the national average, confirming the dual economic and environmental benefits of clean energy investment.

Source: opticsky

関連のおすすめ
  • Tongkuai will participate in the laser fusion energy research program

    The US Department of Energy recently allocated $42 million to support the development of laser fusion technology and designated three new research and innovation centers. This strategic investment aims to promote laser based nuclear fusion to play an important role as a clean and sustainable energy source in the future. Trumpf is one of the main participants known for its laser expertise and activ...

    2024-02-01
    翻訳を見る
  • Shanghai Optical Machinery Institute has made progress for the first time in hard X-ray zoom beam imaging

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, completed the research of hard X-ray zoom beam splitting imaging on the micro focus X-ray source for the first time, and solved the problem of beam splitter limitation in the hard X-ray band. The related achievements are titled "Bifocal photo scene imaging in the...

    2024-04-08
    翻訳を見る
  • The wide application of TORNOS mind machine in diversified industrial fields

    TORNOS walking machine, also known as walking CNC lathe or spindle box mobile CNC automatic lathe, occupies an important position in the field of precision manufacturing due to its excellent performance and wide application areas. This machine tool not only integrates mechanical and electrical technologies, but also becomes an indispensable processing equipment in many industrial fields due to its...

    2024-07-24
    翻訳を見る
  • The research team has developed a mechanical luminescent touch screen that can work underwater

    The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.The team is composed of Pro...

    2024-03-08
    翻訳を見る
  • Han's Laser senior management resigns

    Just now, Han's Laser Technology Industry Group Co., Ltd. announced the resignation of senior management personnel. The board of directors recently received a written resignation report from Mr. Zhao Guanghui, the deputy director of the company's management and decision-making committee. Mr. Zhao Guanghui has applied to resign from his position as deputy director of the company's management and de...

    06-09
    翻訳を見る