日本語

Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

459
2024-02-23 14:30:27
翻訳を見る

Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional materials.

Cecilia Chen, a doctoral student in engineering at Columbia University and co-author of the latest paper, and colleagues from her Alexander Gaeta quantum and nonlinear photonics group used hexagonal boron nitride (hBN). HBN is a two-dimensional material similar to graphene: its atoms are arranged in a honeycomb like repeating pattern, which can be peeled off into thin layers with unique quantum properties. Chen pointed out that hBN is stable at room temperature, and its constituent elements - boron and nitrogen - are very light. This means they vibrate very quickly.

Understanding atomic vibrations
Atomic vibrations occur in all materials above absolute zero. This motion can be quantized as quasi particles called phonons, with specific resonances; In the case of hBN, the team is interested in optical phonon modes that vibrate at 41 THz, with a wavelength of 7.3 μ m. Located in the mid infrared region of the electromagnetic spectrum.

Although the mid infrared wavelength is considered short and therefore has high energy, in images of crystal vibrations, they are considered long and have low energy in most laser optical studies, with the vast majority of experiments and studies conducted in the visible to near-infrared range, approximately 400nm to 2um.

experimental result 
When they tune the laser system to match 7.3 μ When m corresponds to the hBN frequency, Chen, his doctoral student Jared Ginsberg (now a data scientist at Bank of America), and postdoctoral researcher Mehdi Jadidi (now the team leader of quantum computing company PsiQuantum) are able to simultaneously drive phonons and electrons in the hBN crystal, effectively generating new optical frequencies from the medium, which is a fundamental goal of nonlinear optics. The theoretical work led by Professor Angel Rubio from the Max Planck Institute helped the experimental team understand their results.

They used commercial desktop mid infrared lasers to explore the phonon mediated nonlinear optical process of four wave mixing, in order to generate light close to even harmonics of optical signals. They also observed that the number of third-order harmonics produced increased by more than 30 times compared to the case where phonons were not excited.

Dr. Chen said, "We are pleased to demonstrate that amplifying natural phonon motion through laser driving can enhance nonlinear optical effects and generate new frequencies.". The team plans to explore how to use light to modify hBN and similar materials in future work.

This study was funded by the US Department of Energy, the European Research Council, and the German Research Association.

Source: Sohu


関連のおすすめ
  • Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications"....

    2024-07-12
    翻訳を見る
  • Lawrence Livermore National Laboratory develops PW grade thulium laser in the United States

    Recently, according to Tom's Hardware, Lawrence Livermore National Laboratory (LLNL) in the United States is developing a PW (1015 W) level large aperture thulium (BAT) laser. It is reported that this laser has the ability to increase the efficiency of extreme ultraviolet lithography (EUV) light sources by about 10 times, and may potentially replace the carbon dioxide laser used in current EUV too...

    02-13
    翻訳を見る
  • Observation of laser power changes in ultrafast protein dynamics

    When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state with...

    2024-02-28
    翻訳を見る
  • Silicon Valley giants compete for a new 3D printing space race track

    Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can ...

    03-24
    翻訳を見る
  • Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

    Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute ...

    2023-11-17
    翻訳を見る