日本語

China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

962
2025-02-25 14:49:16
翻訳を見る

Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully prepared near ambient temperature responsive liquid crystal elastomers (NAT LCEs) with high orientation sequence parameters and multivariate deformation capabilities. Based on this, an intelligent wristband system with significantly improved heart rate monitoring accuracy was developed. The results were published in the journal ACS Nano under the title "3D Printing of Near Adaptive Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation".

Liquid crystal elastomers, as a new type of intelligent material, have important application value in the fields of soft robots, biomedical devices, and wearable electronics. Traditional liquid crystal elastomers face bottlenecks such as high response temperature (>70 ℃) and limited programmability in manufacturing processes, which severely restrict their practical applications. The development of a new type of liquid crystal elastomer with near ambient temperature response characteristics and precision machining has become a key scientific problem that urgently needs to be overcome in this field. In response to this issue, the research team innovatively proposed a "low-temperature nozzle+cooling platform" composite cold field collaborative control strategy, achieving multiple technological breakthroughs: 1. Precise control of liquid crystal element orientation: maintaining high ink viscosity through a 5 ℃ low-temperature printing environment, inducing highly oriented alignment of liquid crystal elements through shear force, and increasing the orientation sequence parameters by more than 30 times compared to traditional room temperature printing methods. 2. Multivariate deformation programming: achieving reversible deformation of complex structures such as saddles, cones, and English letters. 3. Biocompatible applications: The material responds to temperature and adapts to the human tolerance range, successfully developing an intelligent heart rate monitoring wristband system that can actively adhere to the skin.

 



Figure 1. Schematic diagram of the working principle of the composite cold field 3D printing system


The structure printed in this study exhibits good environmental adaptability: the disk sample spontaneously forms a saddle shape at room temperature, with an increase in curvature at 10 ℃ and a conical shape at 60 ℃. Gradient programming is achieved through dynamic temperature control, and precise curling deformation is achieved through layered temperature control programming for structures such as "USTC" letters. The research team also explored the application of this technology in the field of precision medicine. The liquid crystal elastic wristband with integrated liquid metal circuit actively adheres to the wrist under PID temperature control, significantly improving measurement accuracy and reducing noise. The performance of 1000 fatigue tests remains unchanged, promoting the development of soft robotics technology, biomedical instruments, and wearable electronic devices.

 



Figure 2. Programmable Multivariate Deformation Display and Application


Li Dongxiao, a master's student in the Department of Precision Machinery and Precision Instruments at the University of Science and Technology of China, and Sun Yuxuan, a postdoctoral fellow, are co first authors of the paper. Associate Professor Li Mujun, Professor Zhang Shiwu, and Postdoctoral Fellow Sun Yuxuan are co corresponding authors. Professor Pan Tingrui from the Suzhou Institute of Advanced Study at the University of Science and Technology of China and Professor Li Weihua from the University of Wollongong in Australia are co authors of the paper. This research has received support from the National Key Research and Development Program of the Ministry of Science and Technology, the Natural Science Foundation of Anhui Province, and the Joint Fund of "New Medicine of University of Science and Technology of China". Some experiments have received support from platforms such as the Micro Nano Research and Manufacturing Center of the University of Science and Technology of China and the Physical and Chemical Science Experimental Center of the University of Science and Technology of China.

Source: opticsky

関連のおすすめ
  • In the development of modern electronic welding technology, the application advantages of laser soldering process

    With the rapid development of modern electronic information technology, integrated circuit chip packaging forms are also emerging in an endless stream, and the package density is getting higher and higher, which greatly promotes the development of electronic products to multi-function, high performance, high reliability and low cost.So far, through hole technology (THT) and surface mount technolog...

    2023-09-13
    翻訳を見る
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    翻訳を見る
  • Analysis of Development Prospects and Technological Trends in the Optical Industry

    As a core supporting field of modern technology, the optical industry has broad and diversified development prospects, benefiting from the cross drive of multiple emerging technologies. The following is a systematic analysis from the perspectives of technology trends, application areas, challenges, and opportunities: Core driving forces and growth areas1. Optical communication and 5G/6GDemand ex...

    04-30
    翻訳を見る
  • Industrial blue light laser developer Nuburu adds new director

    Not long ago, Nuburu, the developer of industrial blue light lasers, encountered a personnel change controversy. The departure of two senior executives from its board of directors resulted in a shortage of board members, and the originally scheduled special meeting for financing proposals was forced to be cancelled as a result. Recently, Nuburu announced two new director appointments that will tak...

    01-10
    翻訳を見る
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    翻訳を見る