日本語

The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

792
2023-09-04 17:03:28
翻訳を見る

Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel.

 

The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although as much as 32 million tons of used refractory materials are produced worldwide each year, only a small fraction of this is recycled.

The production of refractories from primary feedstocks generates a considerable amount of CO2, mainly because CO2 must be removed from carbonate-type feedstocks. In addition, raw materials are mainly imported to Europe. There is currently no obvious alternative - and laser devices would be an excellent solution to this problem.

Automatic sorting by laser device

Alexander Leitner, resource project Coordinator at RHI Magnesita, explains: "Refractory products can be precisely adapted to customer requirements. The optimal composition of a high temperature resistant material depends on the intended application, the manufacturing process, and the associated chemical properties of the process medium. This means that our products have very different ingredients. So we have to separate them as precisely as possible before recycling them."

Therefore, the centrepiece of the project is an automatic sorting system for used refractory materials. The laser device will be used to identify the composition of the materials used on the conveyor belt without coming into contact with them. The Laser technology comes from Laser Analytical Systems & Automation (LSA) in Aachen, a spin-off company of the Fraunhofer ILT, which focuses on the development and production of real-time laser analysis systems for industrial applications.

"At Fraunhofer ILT, we have developed an online measurement technology that allows direct analysis of metal scrap on conveyor belts and detects the composition of each scrap." Dr. Cord Fricke-Begemann, head of the Materials Analysis group at Fraunhofer ILT, said, "With this multi-element analysis, we can detect a large number of alloys. We are now transferring these findings to refractories."

The research partners expect that as a result of the findings of this project, they can increase the potential recycling share of the industry from the previous 7% to 30-90%. "We are combining the latest analytics with state-of-the-art software to address current environmental concerns." We are on track to reduce CO2 emissions in Europe by 800,000 tonnes a year." Mr Cord Fricke-Begemann said.

A new method using laser as an underwater metal cutting tool

The demand for modern demolition techniques for underwater use is also growing. For example, to increase the generating capacity of offshore wind farms, old steel frames must first be removed below sea level and then rebuilt on a larger scale.

The Fraunhofer Institute for Materials and Beam Technology (IWS) in Dresden, Germany, has now found a technical way to use lasers as an efficient, environmentally friendly and energy efficient cutting tool in water.

To cut steel and other metals below the surface of the water, IWS researchers use a short-wavelength green laser that can cut even in water. At the same time, water acts as a tool to expel the resulting melt through the incision through pressure. This eliminates power loss, additional gas lines, and other drawbacks. In the lab, this has worked.

In September 2023, IWS will present this innovative process at the SchweiBen & Schneiden Welding and Cutting Exhibition in Essen, Germany.

Cutting metal with lasers is not a new method. However, it is usually operated in a dry environment - infrared or other fairly long lasers are used to cut metal after obtaining magnification benefits.

The IWS engineers used a green laser that has a much shorter wavelength than most current industrial lasers. However, this is possible because green lasers of more than 1kW class have become available to achieve the necessary cutting power.

In the future, a blue laser version with a shorter wavelength is also expected to be easily achieved. This short-wave laser can even penetrate water without causing major damage and loss, so it can also be used in water bodies. This medium, which is abundant in the ocean, can replace the cutting gas required in dry environments, thus eliminating the need for natural gas pipelines.

Source: OFweek

関連のおすすめ
  • Comparative Study of Resistance Spot Welding and Laser Spot Welding of Ultra High Strength Steel for Vehicles

    Researchers from Annamarai University in India and South Ural State University in Russia reported a comparative study of resistance spot welding and laser spot welding of ultra-high strength steel for automobiles. The related research was published in The International Journal of Lightweight Materials and Manufacturing under the title "A comparative study on resistance spot and laser beam spot wel...

    2024-09-05
    翻訳を見る
  • Breaking the limits of optical imaging by processing trillions of frames per second

    Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.The team located at the INRS É nergie Mat é riaux T é l é communications resea...

    2024-04-08
    翻訳を見る
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    翻訳を見る
  • CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

    The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics ...

    2023-12-25
    翻訳を見る
  • E&R Engineering launches a mold cutting solution at Semicon SEA 2024

    Advanced laser and plasma solution provider E&R Engineering Corp. has confirmed that they will participate in the Semiconductor SEA 2024 event held in Kuala Lumpur, Malaysia. With 30 years of focus in the semiconductor industry, E&R has developed a wide range of plasma and laser technologies. At Semicon SEA 2024, they will showcase their latest solutions, including:Plasma Cutting - Small M...

    2024-05-20
    翻訳を見る