日本語

Japan and Germany jointly develop ultra high speed laser material deposition technology

192
2024-10-25 11:12:09
翻訳を見る

Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes of high-strength materials, shorten production time, and potentially extend the life of key components of high-value equipment, including large aircraft.

 


In order to integrate ultra high speed laser material deposition technology into a five axis CNC platform, the Fraunhofer Laser Technology Research Institute and Makino Company have achieved fast dynamic movement of the machining head based on kinematic research, allowing flexible processing of various geometric shapes and coating of components with various materials.

The task of Makino Company in this project is not limited to the hardware of CNC machine tools, but also includes a complete redesign of process control methods. The difficulty lies in technically adapting the machine tools to high acceleration, optimizing process control and machine kinematics, and accurately controlling the interaction between laser beams and materials. The machine tool developed by Makino Singapore subsidiary achieves an effective feed rate of up to 30 meters per minute, which is significantly improved compared to traditional systems. This speed is particularly advantageous when processing large and complex components, as it can significantly shorten processing time.

With decades of experience in laser metal deposition (LMD) processes and component development, the Fraunhofer Institute of Laser Technology has optimized the process parameters for processing various materials, including adjusting laser parameters, fine-tuning powder feeding, and optimizing the motion control of CNC machine tools. The feeding rate and powder gas injection are used to control the heat introduced into the materials. By adjusting the feed rate and powder mass flow rate, precise control of heat input can be achieved, reducing the heat affected zone and ensuring uniform coating quality. In addition, by using high feed rates and optimized powder feed, the deposition efficiency of material applications can be significantly improved with the same or even higher precision, thereby enhancing the overall efficiency of the production process.

In addition to additive manufacturing applications, this new system also has the potential to be applied in the field of maintenance. For many expensive components with minor defects that must be replaced, Makino's flexible system with rotating and tilting workbenches can provide maintenance services, saving the cost of new products, avoiding transportation and delivery time, and minimizing downtime. A key aspect of future development is to identify and validate new application areas for Near Net Shape Additive Manufacturing (EHLA3D) processes, particularly in the application of multi material systems and the production of fine structures.

Source: Yangtze River Delta Laser Alliance

関連のおすすめ
  • Renowned companies such as TRUMPF and Jenoptik participate in high-power laser projects in Germany

    High power laser diodes will be key components of future fusion power plants.Recently, the German Federal Ministry of Education and Research (BMBF) launched a new project called "DioHELIOS". The project will last for 3 years and is part of BMBF's "Fusion 2040" funding program, which aims to build the first nuclear fusion power plant in Germany by 2040.The project will last for three years and rece...

    2024-11-09
    翻訳を見る
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    翻訳を見る
  • Scientists uncover the HPC potential of advances in communications and global laser light sources

    Thanks to the advent of high performance computing (HPC) for global laser light sources, the optical communications world is on the verge of major change. This revolutionary technology will redefine the way we transmit and receive data, bringing unprecedented speed and efficiency.Optical communication, which uses light to transmit information, has been a cornerstone of our digital world for deca...

    2023-08-04
    翻訳を見る
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    翻訳を見る
  • Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

    Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.Ultra fast laser proc...

    2024-08-06
    翻訳を見る